-
公开(公告)号:CN119254236A
公开(公告)日:2025-01-03
申请号:CN202411291946.8
申请日:2024-09-14
Applicant: 北京大学
Abstract: 本发明公开一种基于范畴论建模的编码智能优化方法及系统,属于智能编码技术领域。该方法包括:基于编码任务,确定提取数据之间的关系集合的建模范式,并根据所述建模范式,构建编码模型;生成内容数据集,并基于编码任务需要的关系集合对内容数据集进行标注;根据编码任务下的数据放缩结构,确定压缩目标;基于所述压缩目标,在标注后的内容数据集上训练所述编码模型;使用训练后的编码模型完成所述编码任务。本发明通过引入结合模型训练与压缩优化过程,提升紧致表征下的推理性能,以提高编码性能。
-
公开(公告)号:CN115131844A
公开(公告)日:2022-09-30
申请号:CN202110320033.4
申请日:2021-03-25
Applicant: 北京大学
IPC: G06V40/16 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/08
Abstract: 本发明公开了一种无监督低光照人脸检测模型训练方法及检测方法。本方法为:1)收集已标注的正常光照人脸训练数据与无标注的低光照人脸训练数据,得到正常光照人脸检测训练数据集H、低光照训练数据集L;2)对低光照训练数据集L中的图像进行提亮,得到提亮后的低光照训练数据集E(L);3)获取集合E(L)中低光照人脸训练数据的噪声与色偏分布,应用于集合H中的正常光照人脸训练数据,得到降质后的正常光照人脸训练数据集D(H);4)利用集合E(L)、集合D(H)和集合H,训练人脸检测模型。对待检测的低光照人脸检测图像进行提亮后输入到训练后的低光照人脸检测模型,输出人脸检测结果。本发明能够大大提升人脸检测性能。
-
公开(公告)号:CN114363624A
公开(公告)日:2022-04-15
申请号:CN202011090817.4
申请日:2020-10-13
Applicant: 北京大学
Abstract: 本发明公开了一种基于敏感度的码率分配特征压缩方法,其步骤包括:1)将图像的神经网络中间层特征输入深层神经网络进行计算,得到无损网络输出;2)对于所述神经网络中间层特征的每一单通道i,进行如下处理:为单通道i对应的特征施加编码噪声,得到该单通道i的加噪特征;然后将单通道i的加噪特征输入深层神经网络进行计算,得到单通道i的加噪输出;然后计算单通道i的加噪输出与所述无损网络输出的差值,作为单通道i的编码噪声敏感度;3)根据各单通道的编码噪声敏感度进行码率分配,为每个单通道分配压缩质量参数;4)根据各单通道分配所得的压缩质量参数,对量化后的所述神经网络中间层特征进行压缩,得到中间层特征压缩码流。
-
公开(公告)号:CN110677644B
公开(公告)日:2021-11-16
申请号:CN201810713756.9
申请日:2018-07-03
Applicant: 北京大学
IPC: H04N19/103 , H04N19/176 , H04N19/573 , H04N19/70
Abstract: 本发明公开一种视频编码、解码方法及视频编码帧内预测器。本发明的预测器包括一循环神经网络,所述循环神经网络用于生成待编码块的预测值;其中,所述循环神经网络利用待编码块的参考块的像素值均值对该待编码块进行填充,产生一图像;然后将该图像映射到特征空间,并提取该图像的局部特征;然后利用所述局部特征对该待编码块的预测块进行填充,得到该待编码块的预测值。本发明通过块级参考像素的选取和端到端的预测方法提高了编码效率,增强了现有视频编码器的编码性能。
-
公开(公告)号:CN113132732A
公开(公告)日:2021-07-16
申请号:CN201911408329.0
申请日:2019-12-31
Applicant: 北京大学
IPC: H04N19/187 , H04N19/30 , H04N19/44 , H04N19/146 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种人机协同的视频编码方法及视频编码系统。本方法为:1)对于一段待编码视频以及对应的关键点序列,编码器首先对关键点序列进行编码压缩,形成关键点序列码流;然后从待编码视频中选取一帧并编码,作为参考帧,形成参考帧码流;根据关键点序列和参考帧生成一预测视频;2)降低该待编码视频的分辨率;计算该真实低分率视频与预测视频信号之间的残差,根据各帧的残差组成一残差视频序列并将其编码成残差码流;3)编码器根据需求将码流选择性的传输到解码器;如果为机器视觉任务,则根据关键点码流重建得到关键点序列;如果需要重建视频序列,则根据三码流重建得到原分辨率视频。本发明根据应用需求,提供可伸缩的视频编码。
-
公开(公告)号:CN110324635B
公开(公告)日:2021-06-15
申请号:CN201810294119.2
申请日:2018-03-30
Applicant: 北京大学 , 北大方正集团有限公司 , 北京北大方正电子有限公司
IPC: H04N19/523 , H04N19/59
Abstract: 本发明提供了一种分像素插值方法、系统、计算机设备和介质。其中,一种分像素插值方法,包括:对训练集中的每一张原始图像进行处理,得到整像素块和分像素块;将整像素块前向传播到卷积神经网络,得到分像素块的预测值;计算分像素块的预测值与分像素块的均方差;将均方差反向传播到卷积神经网络,以更新卷积神经网络各层的权值,循环迭代直至卷积神经网络收敛,得到分像素插值网络。通过本发明的技术方案,实现了通过单一网络即可插值出属于不同分像素位的参考块,并使得视频压缩的性能得到提升。
-
公开(公告)号:CN112734676A
公开(公告)日:2021-04-30
申请号:CN202110076676.9
申请日:2021-01-20
Applicant: 北京大学
Abstract: 本发明公开了一种空间尺度泛化的去雨方法,其步骤包括:1)获取或构建合成训练数据集;2)每一样本分别进行放大和缩小,得到不同大小的图像并输入到残差网络中,提取相应图像的深度网络特征;3)计算相同内容、不同大小的雨天图像经过残差网络后输出的特征统一大小后按位相减得到特征差异,构建空间尺度泛化约束;4)将特征映射为去雨图像,构建图像级别的重构约束;5)将无雨图像及其缩放后的图像特征映射为输出图像并计算其与对应输入图像的差异,构建细节补偿约束;6)基于空间尺度泛化约束、重构约束和细节补偿约束,训练残差网络;7)将待处理的雨天图像输入到残差网络,提取特征并将其映射为输出图像。
-
公开(公告)号:CN112651898A
公开(公告)日:2021-04-13
申请号:CN202110034912.0
申请日:2021-01-12
Applicant: 北京大学
Abstract: 本发明公开了一种基于记忆增强的视频去雨方法与装置,其步骤包括:1)将卷积长短期记忆网络的内部状态作为全局长期记忆;对于待去雨处理的目标视频,将该目标视频的前n帧分别输入记忆增强去雨网络,获得各帧对应的去雨结果;2)对于该目标视频的第n帧之后的每一帧,执行步骤a)~c),获得该目标视频对应的去雨视频:a)将当前待去雨帧的前多帧的去雨结果、全局长期记忆、当前待去雨帧输入记忆增强去雨网络进行去雨,得到当前帧的去雨结果;b)计算当前待去雨帧与其去雨结果之间的差值,作为当前待去雨帧的雨痕图;c)将雨痕图输入卷积长短期记忆网络,更新该卷积长短期记忆网络的内部状态作为新的全局长期记忆。
-
公开(公告)号:CN112598596A
公开(公告)日:2021-04-02
申请号:CN202011559932.1
申请日:2020-12-25
Applicant: 北京大学
Abstract: 本发明公开了一种基于动态网络路由的图像去雨方法及电子装置,包括根据样本雨图的相应雨量大小,划分为n个分辨率尺度;依据样本雨图与相应样本无雨图对一神经网络进行训练,使各样本雨图拟合相应的分辨率尺度,得到去雨模型;将待处理图片输入去雨模型,得到去雨图片。本发明可以为不同的输入雨图构建不同的前向传播路径,这对于提升去雨模型对不同雨分布的输入图像的鲁棒性有明显优势。
-
公开(公告)号:CN110796607A
公开(公告)日:2020-02-14
申请号:CN201810876683.5
申请日:2018-08-03
Applicant: 北京大学
Abstract: 本发明公开了一种基于视网膜大脑皮层理论的深度学习低光照图像增强方法,其步骤包括:通过一个分解网络将待提亮低光照图片分解成本质和光照,在本质上进行噪声去除,将光照和本质输入一个提亮网络得到提亮后的光照,将提亮后的光照和去除噪声后的本质相乘得到最后的正常光照图片。本发明能够端对端地学习提亮低光照图像,通过机器学习方法能够取得更为精确的光照本质分解和更自然适用范围更广的提亮结果。
-
-
-
-
-
-
-
-
-