-
公开(公告)号:CN113375634A
公开(公告)日:2021-09-10
申请号:CN202110484593.3
申请日:2021-04-30
Applicant: 北京临近空间飞行器系统工程研究所
Abstract: 本发明涉及一种基于大气模型和飞行器法向过载组合的高度测量方法,使用飞行器惯性导航系统测量获得的攻角信息、法向过载信息,基于飞行器法向气动力模型准确性高、且攻角受风影响小和海拔高度与大气密度相关这一本质规律,采用数学方法,利用模型和测量到的速度、法向过载信息,获得飞行器的海拔高度。通过无迹卡尔曼滤波技术对数据进行融合,获得精确的飞行器组合导航海拔高度。相对雷达高度表的方法,能够节省几百万元的成本,节省数十公斤的重量,节约飞行器上的空间。
-
公开(公告)号:CN112817334A
公开(公告)日:2021-05-18
申请号:CN202110061684.6
申请日:2021-01-18
Applicant: 北京临近空间飞行器系统工程研究所
Inventor: 张敏刚 , 巩英辉 , 刘建辉 , 刘明 , 杨明 , 陈志刚 , 姜智超 , 闫颖鑫 , 张宁宁 , 李欣 , 秦小丽 , 葛亚杰 , 胡东飞 , 王兰松 , 高兴 , 曹晶莹 , 刘辉 , 杨丁 , 余亚晖 , 徐春铃 , 曹轶 , 林萌 , 韩天宇
IPC: G05D1/10
Abstract: 本申请公开了一种滑翔飞行器的弹道设计方法、装置及存储介质,用于解决传统弹道设计法存在弹道倾角不可控的问题。本申请公开的滑翔飞行器的弹道设计方法包括:确定飞行动力学模型;确定终端约束条件;根据所述飞行动力学模型和所述终端约束条件,确定优化变量参数模型;根据所述优化变量参数模型,确定优化求解参数模型;根据所述优化求解参数模型,得到弹道的最优攻角参数剖面和倾侧角参数剖面。本申请还提供了一种滑翔飞行器的弹道设计装置及存储介质。
-
公开(公告)号:CN115167489B
公开(公告)日:2024-12-24
申请号:CN202210770637.3
申请日:2022-06-30
Applicant: 北京临近空间飞行器系统工程研究所
IPC: G05D1/49 , G05D1/46 , G05D101/10 , G05D109/20
Abstract: 本发明涉及一种依靠空气舵起控不同攻角的安全边界快速确定方法,包括:基于飞行器的纵向控制能力,考虑气动、质心偏差获得纵向配平舵偏,依据纵向物理舵偏范围,确定飞行器纵向可用攻角范围[α1min,α1max];基于飞行器的横侧向控制能力,考虑气动、质心偏差,获得横向控制闭环稳定性参数LCDP,确定飞行器横侧向可用攻角范围[α2min,α2max];将上述纵向可用攻角范围[α1min,α1max]和横侧向可用攻角范围[α2min,α2max],求取交集,确定飞行器可用攻角范围[αmin,αmax]。
-
公开(公告)号:CN115167489A
公开(公告)日:2022-10-11
申请号:CN202210770637.3
申请日:2022-06-30
Applicant: 北京临近空间飞行器系统工程研究所
Abstract: 本发明涉及一种依靠空气舵起控不同攻角的安全边界快速确定方法,包括:基于飞行器的纵向控制能力,考虑气动、质心偏差获得纵向配平舵偏,依据纵向物理舵偏范围,确定飞行器纵向可用攻角范围[α1min,α1max];基于飞行器的横侧向控制能力,考虑气动、质心偏差,获得横向控制闭环稳定性参数LCDP,确定飞行器横侧向可用攻角范围[α2min,α2max];将上述纵向可用攻角范围[α1min,α1max]和横侧向可用攻角范围[α2min,α2max],求取交集,确定飞行器可用攻角范围[αmin,αmax]。
-
公开(公告)号:CN115097725A
公开(公告)日:2022-09-23
申请号:CN202210164344.0
申请日:2022-02-23
Applicant: 北京临近空间飞行器系统工程研究所
Inventor: 曹晶莹 , 张宁宁 , 肖文 , 唐毛 , 谢佳 , 杨明 , 刘明 , 杨丁 , 胡东飞 , 葛亚杰 , 张敏刚 , 王兰松 , 高兴 , 秦小丽 , 陈默 , 余卓阳 , 赵良 , 孙精华
IPC: G05B13/04
Abstract: 本发明提出一种自主感知与智能机动飞行试验的自适应弹道设计方法,属于武器技术领域,包括如下步骤:根据雷达感知装置/光学感知装置的安装位置,确定各探测距离及探测角度的求解模型,明确探测器坐标系定义,通过分析试验飞行器搭载的感知装置与地面雷达/目标火箭的时空关系,确定探测距离及探测角度的求解模型;飞行试验按照先雷达感知试验、后光学感知机动试验的顺序开展,将试验飞行器弹道分为两段:雷达感知飞行段和光学感知机动飞行段;根据飞行试验目的,设计试验飞行器的飞行程序及程序角,在总射程的约束条件下,通过优化求解得到试验飞行器的弹道程序角剖面参数。实现了一发飞行试验同时满足对地面雷达及目标火箭的探测需求问题。
-
公开(公告)号:CN113945356A
公开(公告)日:2022-01-18
申请号:CN202111201455.6
申请日:2021-10-15
Applicant: 南京航空航天大学 , 北京临近空间飞行器系统工程研究所
IPC: G01M9/06
Abstract: 本发明公开了一种适用于烟线流场可视化实验的装置和方法本发明涉及一种适用于烟线流场可视化实验的装置和方法,该方法主要依靠两个相同的金属丝输送装置,来完成金属丝在两个输送装置之间的传动,并且在传动过程金属丝中能自动沾满发烟所需要的油。当两个装置内的金属导向滚轮都通上电后,两个装置之间金属丝会因通电而发热,附着在金属丝表面的发烟油通电加热后汽化为烟雾,在片光激光的照射下,这些烟雾能很好的作为示踪粒子显示流场。通过此方法原理简单而实用,可以很好地解决实验中横向布置金属线时涂油困难,发烟不持续的问题,大大提高了实验效率。
-
公开(公告)号:CN115307656B
公开(公告)日:2025-03-07
申请号:CN202210854592.8
申请日:2022-07-15
Applicant: 北京临近空间飞行器系统工程研究所
IPC: G01C25/00
Abstract: 本发明涉及一种星敏感器测角精度补偿方法,包括:确定星敏感器测角误差的产生机理,根据所述的机理建立高动态星敏感器测角精度误差模型;所述星敏感器测角误差的产生机理是由于星点能量中心与时间中心不匹配;在飞行任务中采用惯导测量数据解算载体角动态信息;通过上述求解的载体角动态信息结合建立的高动态星敏感器测角精度误差模型,在线计算出动态引起的星敏感器测角误差;利用上述计算的动态引起的星敏感器测角误差对星敏感器输出的姿态角进行补偿。
-
公开(公告)号:CN115097725B
公开(公告)日:2024-09-10
申请号:CN202210164344.0
申请日:2022-02-23
Applicant: 北京临近空间飞行器系统工程研究所
Inventor: 曹晶莹 , 张宁宁 , 肖文 , 唐毛 , 谢佳 , 杨明 , 刘明 , 杨丁 , 胡东飞 , 葛亚杰 , 张敏刚 , 王兰松 , 高兴 , 秦小丽 , 陈默 , 余卓阳 , 赵良 , 孙精华
IPC: G05B13/04
Abstract: 本发明提出一种自主感知与智能机动飞行试验的自适应弹道设计方法,属于武器技术领域,包括如下步骤:根据雷达感知装置/光学感知装置的安装位置,确定各探测距离及探测角度的求解模型,明确探测器坐标系定义,通过分析试验飞行器搭载的感知装置与地面雷达/目标火箭的时空关系,确定探测距离及探测角度的求解模型;飞行试验按照先雷达感知试验、后光学感知机动试验的顺序开展,将试验飞行器弹道分为两段:雷达感知飞行段和光学感知机动飞行段;根据飞行试验目的,设计试验飞行器的飞行程序及程序角,在总射程的约束条件下,通过优化求解得到试验飞行器的弹道程序角剖面参数。实现了一发飞行试验同时满足对地面雷达及目标火箭的探测需求问题。
-
公开(公告)号:CN114117758A
公开(公告)日:2022-03-01
申请号:CN202111340012.5
申请日:2021-11-12
Applicant: 北京临近空间飞行器系统工程研究所
Inventor: 张敏刚 , 王永海 , 徐春铃 , 付秋军 , 巩英辉 , 姜智超 , 杨丁 , 刘辉 , 孙精华 , 杨缙 , 曹轶 , 王锦涛 , 冯建林 , 闫颖鑫 , 陈志刚 , 刘明 , 刘建辉 , 杨明 , 张宁宁
IPC: G06F30/20 , G06N3/00 , G06F119/14
Abstract: 本公开的一种基于粒子群算法的火箭助推段弹道优化方法,根据所述火箭助推段的运动参数建立所述火箭助推段弹道三自由度运动模型;根据所述火箭助推段三自由度运动模型构建所述火箭助推段飞行程序角模型;基于所述火箭助推段飞行程序角模型建立所述火箭助推段弹道优化模型;基于粒子群算法和所述火箭预设初值计算得到所述火箭助推段弹道优化模型的最优解。能有效解决固体运载火箭弹道优化设计问题,末助推级液体推进剂消耗减少11.1%,收敛速度快,配置参数少,易于工程实现等优点。
-
公开(公告)号:CN113375634B
公开(公告)日:2022-10-14
申请号:CN202110484593.3
申请日:2021-04-30
Applicant: 北京临近空间飞行器系统工程研究所
Abstract: 本发明涉及一种基于大气模型和飞行器法向过载组合的高度测量方法,使用飞行器惯性导航系统测量获得的攻角信息、法向过载信息,基于飞行器法向气动力模型准确性高、且攻角受风影响小和海拔高度与大气密度相关这一本质规律,采用数学方法,利用模型和测量到的速度、法向过载信息,获得飞行器的海拔高度。通过无迹卡尔曼滤波技术对数据进行融合,获得精确的飞行器组合导航海拔高度。相对雷达高度表的方法,能够节省几百万元的成本,节省数十公斤的重量,节约飞行器上的空间。
-
-
-
-
-
-
-
-
-