时序InSAR大气相位去除和形变解算的方法及系统

    公开(公告)号:CN116148855A

    公开(公告)日:2023-05-23

    申请号:CN202310349555.6

    申请日:2023-04-04

    Abstract: 本发明公开了一种时序InSAR大气相位去除和形变解算的方法及系统,该方法首先获取监测区的时间序列SAR图像及DEM数据,并进行预处理、差分干涉、滤波及相位解缠;其次构建含有大气相位的差分干涉图的样本库;再基于条件生成对抗神经网络CGAN对样本库进行增广并构建完整版样本库;然后基于TransUNet网络构建大气相位去除TransUNet网络模型,并进行训练和测试,以去除差分干涉图中的大气相位;最后基于去除大气相位后的差分干涉图进行时序InSAR的形变解算,以获取监测区的地表形变信息。本发明能够突破现有InSAR技术中无法完全消除大气相位误差的技术瓶颈,同时提高了时序InSAR形变解算的精度。

    一种面向多芯粒组合芯片的片上网络仿真系统

    公开(公告)号:CN115460128A

    公开(公告)日:2022-12-09

    申请号:CN202211399069.7

    申请日:2022-11-09

    Abstract: 本发明公开了一种面向多芯粒组合芯片的片上网络仿真系统,包括:片上网络生成单元,用于根据多芯粒组合芯片特征生成片上网络的抽象模型;数据路由仿真单元,用于对数据包在片上网络的运行进行仿真并输出数据在片上网络的仿真时间、路由所需的总周期数以及每个数据包的平均延迟。本申请通过在每个芯粒加上片间路由器并与芯粒内部的片内路由器相连,形成异构双层拓扑网络,使之可以仿真不同芯粒间的处理单元交互。对多芯粒芯片设计提供了性能评估,有利于芯片设计初期的探索;可灵活配置多芯粒芯片的各项参数,对不同规模的多芯粒芯片进行仿真。

    一种可组装的分布式计算和存储系统及其构造方法

    公开(公告)号:CN112804297A

    公开(公告)日:2021-05-14

    申请号:CN202011599244.8

    申请日:2020-12-30

    Abstract: 本发明公开了一种可组装的分布式计算和存储系统及其构造方法,包括:一个以上域服务器,用于计算服务或存储服务;网络交换单元,负责将域服务器连接形成分布式计算和存储系统;域服务器包括:对象处理单元,采用多核构造处理器线程组,负责域服务器内网络连接,并通过高级语言编程提供管理控制和数据处理;计算单元,提供计算能力;内存单元,用于动态随机存储器;持久化内存单元,用于非易失内存;存储单元,提供持久化存储;多个计算单元、多个内存单元、多个非易失内存单元、多个存储单元,分别通过网络交换单元连接形成计算池、内存池、非易失内存池、存储池;一个或多个域服务器通过网络交换单元连接形成分布式计算和存储系统。

    面向推荐系统矩阵分解方法的异构多XPU机器学习系统

    公开(公告)号:CN111967590B

    公开(公告)日:2021-02-02

    申请号:CN202011142652.0

    申请日:2020-10-23

    Abstract: 本发明公开了面向推荐系统矩阵分解方法的异构多XPU机器学习系统,包括参数服务器和与其连接的一组XPU工作器,所述的参数服务器用于数据加载、数据分配,以及矩阵分解算法中参数分发、参数接收和参数更新,XPU工作器用于参数计算和局部更新,参数服务器包括DataManager模块,用于根据XPU工作器的性能计算并提供数据划分信息,XPU工作器包括异步SGD优化器。异构系统的数据采用一级分配,内部共享同一数据锁,当XPU规模变大时,锁开销加剧影响系统性能,利用XPU工作器的异步SGD优化器,使得XPU工作器之间相互无锁,XPU工作器内部独立进行数据分块和调度。

    支持深度神经网络推理加速的异构存算融合系统及方法

    公开(公告)号:CN112149816A

    公开(公告)日:2020-12-29

    申请号:CN202011340107.2

    申请日:2020-11-25

    Abstract: 本发明公开了一种支持深度神经网络推理加速的异构存算融合系统及方法,包括:主机处理器,用于控制和管理整个异构存算融合系统;非易失内存模块,与所述主机处理器相连,用于神经网络处理;3D堆叠内存模块,与所述主机处理器相连,用于神经网络处理;网络模块,与所述主机处理器相连,用于与外部主机连接;配置电路,与所述主机处理器相连,用于接收所述主机处理器的配置命令并控制电压发生器,也用于接收所述主机处理器的配置命令并配置3D堆叠内存模块;电压发生器,分别与所述非易失内存模块和配置电路相连,用于接收所述配置电路的控制命令,对所述非易失内存模块施加外部激励,调节其电导状态。

    一种存储资源调度方法、装置、存储介质及电子设备

    公开(公告)号:CN119179581B

    公开(公告)日:2025-04-15

    申请号:CN202411684883.2

    申请日:2024-11-22

    Abstract: 本说明书公开了一种存储资源调度方法、装置、存储介质及电子设备,可以通过预先构建的包含有多级分层的数据存储系统,执行针对目标模型的训练任务,并在执行针对目标模型的训练任务的过程中,可以基于预先确定的不同训练样本的数据质量参数,以及目标模型在不同的训练周期的不同的状态参数下对数据质量不同的训练样本数据的需求,对设置于不同分层中的不同异构存储资源进行调度管理,以提升水平方向的数据存取效率,从而可以从横纵两方面全面提升数据的存取效率,进而可以提升模型的训练效率。

    一种面向多芯粒组合芯片的片上网络仿真系统

    公开(公告)号:CN115460128B

    公开(公告)日:2023-07-07

    申请号:CN202211399069.7

    申请日:2022-11-09

    Abstract: 本发明公开了一种面向多芯粒组合芯片的片上网络仿真系统,包括:片上网络生成单元,用于根据多芯粒组合芯片特征生成片上网络的抽象模型;数据路由仿真单元,用于对数据包在片上网络的运行进行仿真并输出数据在片上网络的仿真时间、路由所需的总周期数以及每个数据包的平均延迟。本申请通过在每个芯粒加上片间路由器并与芯粒内部的片内路由器相连,形成异构双层拓扑网络,使之可以仿真不同芯粒间的处理单元交互。对多芯粒芯片设计提供了性能评估,有利于芯片设计初期的探索;可灵活配置多芯粒芯片的各项参数,对不同规模的多芯粒芯片进行仿真。

    芯粒中神经网络推理的模块化调度方法、装置和计算设备

    公开(公告)号:CN115658274B

    公开(公告)日:2023-06-06

    申请号:CN202211425389.5

    申请日:2022-11-14

    Abstract: 本发明公开了一种芯粒中神经网络推理的模块化调度方法、装置和计算设备,包括:获取在芯粒中进行神经网络推理的调度策略搜索空间;获取并依据神经网络的计算图生成算子深度,依据计算图将算子划分为串行组;依据算子间的数据依赖关系、算子深度和串行组,划分计算图得到数据依赖模块和并行数据依赖模块;计算数据依赖模块的数据依赖复杂度,依据数据依赖复杂度、并行数据依赖模块以及芯粒资源总数计算算子的最大可用资源分配数量,作为调度策略迭代搜索的初始约束;依据调度策略搜索空间和初始约束迭代搜索使得计算开销、算子内和算子间数据传输开销、芯粒多级路由产生的拥塞开销之和最小的数据依赖模块调度策略。

    一种芯粒算法调度方法、系统、电子设备及存储介质

    公开(公告)号:CN115860081B

    公开(公告)日:2023-05-26

    申请号:CN202310179898.2

    申请日:2023-03-01

    Abstract: 本发明涉及一种芯粒算法调度方法,包括:获取待调度的神经网络算法计算图;获取芯粒的拓扑结构,并基于拓扑结构生成芯粒资源列表;对神经网络算法计算图进行图优化;对计算图划分并行组;对计算图进行活跃性分析;生成计算图中的每个算子的策略和对应的开销;生成整数线性规划的优化变量;设定整数线性规划的求解目标;设定整数线性规划的约束条件;求解整数线性规划问题;将求解整数线性规划问题得到的解作为计算图在芯粒上的调度方法。与现有技术相比,本发明基于整数线性规划技术,将算法调度空间搜索问题转换成整数线性规划求解问题,通过设置多种求解约束缩小策略探索空间,能够在很短的时间内得到神经网络算法在芯粒上最优的调度方案。

    一种基于DRAM存内计算的碱基序列过滤方法与装置

    公开(公告)号:CN115409174B

    公开(公告)日:2023-03-31

    申请号:CN202211354686.5

    申请日:2022-11-01

    Abstract: 本发明公开一种基于DRAM存内计算的碱基序列过滤方法与装置,该方法为:步骤一,根据DRAM的存储阵列的列宽和所要筛选目标碱基序列的起点地址,筛选出目标碱基序列后进行重新整理组合;步骤二,对重新整理组合后的目标碱基序列分别进行碱基为A腺嘌呤、G鸟嘌呤、C胞嘧啶、T胸腺嘧啶的标记并获取到对应碱基的标记行;步骤三,对标记行数据进行移位后统计标记行中位置值为1的个数,获得对应碱基的统计结果;步骤四,利用参考碱基序列的统计结果与所述目标碱基序列的统计结果进行对比,过滤所筛选的目标碱基序列。本发明将位置匹配筛选放置在内存子阵列中进行,减少了大量数据在cpu与内存之间的搬移,成倍提升了计算效率,降低了功耗。

Patent Agency Ranking