一种景象匹配方法、装置、存储介质及电子设备

    公开(公告)号:CN117078985A

    公开(公告)日:2023-11-17

    申请号:CN202311344161.8

    申请日:2023-10-17

    Abstract: 本说明书公开了一种景象匹配方法、装置、存储介质及电子设备。在本说明书提供的景象匹配方法中,获取实测图像与基准图像;将所述实测图像与所述基准图像输入预先训练的预测模型,所述预测模型至少包括分类子网、匹配子网、输出子网;通过所述分类子网对所述实测图像与所述基准图像进行分类,得到所述实测图像的类别与所述基准图像的类别;通过所述匹配子网,根据所述实测图像与所述基准图像,以及所述实测图像的类别与所述基准图像的类别,确定所述实测图像在所述基准图像中的定位结果;通过所述输出子网,根据所述匹配子网确定出的定位结果输出匹配结果。

    一种模型的训练方法、装置、存储介质及电子设备

    公开(公告)号:CN117058525A

    公开(公告)日:2023-11-14

    申请号:CN202311293164.3

    申请日:2023-10-08

    Abstract: 本说明书公开了一种模型的训练方法、装置、存储介质及电子设备,首先可获取待训练的图像处理模型中网络层的连接权重,并根据连接权重,确定所述待训练的图像处理模型中的成熟连接权重以及非成熟连接权重。然后,获取样本图像以及样本图像对应的标注,并根据样本图像以及样本图像对应的标注,分别调整成熟连接权重以及非成熟连接权重,得到训练完成的图像处理模型。最后,根据得到的训练完成的图像处理模型中的各连接权重,确定训练完成的图像处理模型中的非成熟连接权重并剪枝,得到最终的图像处理模型。该方法在实现模型压缩的同时,兼顾了非成熟连接权重对模型性能造成的影响,进一步提高了模型的性能。

    一种模型训练和地磁图优化方法、装置、介质及设备

    公开(公告)号:CN116721316A

    公开(公告)日:2023-09-08

    申请号:CN202311010106.5

    申请日:2023-08-11

    Abstract: 本说明书公开了一种模型训练和地磁图优化方法、装置、介质及设备。所述方法包括:获取指定区域的初始地磁图;通过预设矢量磁强计,测量指定区域的磁场数据,并基于磁场数据生成目标地磁图,目标地磁图的分辨率高于初始地磁图的分辨率;将初始地磁图作为训练样本输入待训练生成模型中的生成网络,以通过生成网络生成指定区域的超分辨率地磁图;将超分辨率地磁图以及目标地磁图输入生成模型中的判别网络,以通过判别网络确定超分辨率地磁图为目标地磁图的概率;以最小化超分辨率地磁图与目标地磁图之间的偏差,以及,最小化将超分辨率地磁图判别为目标地磁图的概率为优化目标,对生成模型进行训练。

    一种模型量化方法、装置及介质
    14.
    发明公开

    公开(公告)号:CN119721273A

    公开(公告)日:2025-03-28

    申请号:CN202510212619.7

    申请日:2025-02-25

    Abstract: 本申请公开了一种模型量化方法、装置及介质,该方法包括:对预训练模型量化得到初始量化模型,并确定插入初始量化模型中的提升模块的目标数量。将初始量化模型划分为目标数量个骨干网络模块;为各骨干网络模块并联插入一个提升模块,得到包括多个目标单元的待优化模型;目标单元包括提升模块和骨干网络模块;依次对待优化模型中各目标单元进行优化,得到中间优化模型;通过预设损失函数对中间优化模型进行全局优化,得到目标优化模型。由此,在初始量化模型中插入提升模块得到待优化模型,即,在初始量化模型中增加计算复杂度以提升计算精度。进一步的,依次对待优化模型进行局部和全局优化,得到高运行速度和高计算精度的目标优化模型。

    一种向硬件平台部署模型的方法、装置、存储介质、设备

    公开(公告)号:CN119168023A

    公开(公告)日:2024-12-20

    申请号:CN202411602959.2

    申请日:2024-11-11

    Abstract: 本说明书公开了一种向硬件平台部署模型的方法、装置、存储介质、设备,确定待部署模型的网络结构搜索空间,根据网络结构搜索空间中各候选结构预设的性能评价,在各候选结构中确定构成待部署模型的目标结构,将目标结构构成的待部署模型部署于目标硬件平台,利用待部署模型对样本数据进行计算,得到计算结果,根据计算结果与样本数据对应的标签之间的差异以及待部署模型在网络结构搜索空间下的预期计算性能,以预设的损失函数,确定损失值,根据损失值对待部署模型的结构进行调整,直至待部署模型的计算性能符合预设的性能条件,可根据待部署模型的性能需求以及目标硬件平台的硬件性能对待部署模型的结构进行调整。

    一种模型训练方法、装置、存储介质以及电子设备

    公开(公告)号:CN118097359B

    公开(公告)日:2024-07-19

    申请号:CN202410493628.3

    申请日:2024-04-23

    Abstract: 本说明书提供的一种模型训练方法、装置、存储介质以及电子设备,获取目标区域的全色图像、多光谱图像以及标准融合图像,将全色图像以及多光谱图像输入到目标模型中,以提取出全色图像的频域特征以及多光谱图像的频域特征,并将全色图像的频域特征以及多光谱图像的频域特征进行特征融合,以确定出第一特征图像,以及,对全色图像以及多光谱图像进行图像融合,以根据融合后的图像中包含的各像素点的像素信息,确定出自适应权重,并根据自适应权重对融合后的图像进行处理,以得到第二特征图像,将第一特征图像与第二特征图像进行叠加,以确定输出的预测融合图像,以最小化预测融合图像与标准融合图像之间的偏差为优化目标,对目标模型进行训练。

    一种无监督的高精矢量地图元素异常检测方法

    公开(公告)号:CN118053052B

    公开(公告)日:2024-06-28

    申请号:CN202410457517.7

    申请日:2024-04-16

    Abstract: 本说明书公开了一种无监督的高精矢量地图元素异常检测方法,可以将高精地图中各矢量元素分为线段元素、长线元素以及不规则元素,并基于三类元素构建空间检索树KD‑Tree,而后可以针对每类元素,根据KD‑Tree构建该类元素对应的相对空间关系特征,最后,可以根据各类元素对应的相对空间关系特征,通过预设的离群点检测方法,对各矢量元素进行异常元素检测,本发明提出了一种自动化的针对高精矢量地图的异常检测算法,可以在已构建好的高精矢量地图中无监督、自动化地检测出可能存在错误的异常元素,相较于人工的地图核准工作,能够利用自动化算法降低重复性劳动,同时能够大大提升自动驾驶地图部署效率,降低错误元素的漏检率。

    一种图像匹配模型训练的方法、装置、存储介质、设备

    公开(公告)号:CN118015316B

    公开(公告)日:2024-06-11

    申请号:CN202410410287.9

    申请日:2024-04-07

    Abstract: 本说明书公开了一种图像匹配模型训练的方法、装置、存储介质、设备,获取由第一基准图像和第一待匹配图像组成的第一样本组,将第一样本组输入预先训练的教师模型,确定第一基准图像与第一待匹配图像的匹配度,作为伪标注,将第一样本组输入图像匹配模型,确定第一基准图像与第一待匹配图像的当前匹配度,图像匹配模型的复杂度小于教师模型的复杂度,根据当前匹配度与伪标注的差异,对图像匹配模型进行训练,本方法利用预先训练的复杂度较高、输出结果精准的教师模型,使得复杂度较低、运算速度较快的图像匹配模型可以学习到教师模型的策略,最终训练得到运算速度快、输出结果精准的图像匹配模型,可应对时限短、批量大的图像定位匹配任务。

    一种无人机组合导航的方法、装置、存储介质及电子设备

    公开(公告)号:CN118816855A

    公开(公告)日:2024-10-22

    申请号:CN202411310043.X

    申请日:2024-09-19

    Abstract: 本说明书公开了一种无人机组合导航的方法、装置、存储介质及电子设备,当检测到第一目标区域时,无人机组合导航系统中的主控单元通过惯性测量单元和视觉传感器,确定无人机所处的第一位置,确定从第一位置到第一目标区域的第一导航路径,控制无人机按照第一导航路径飞行。在控制无人机按照第一导航路径飞行时,监控无人机的飞行高度,当飞行高度为预设高度时,确定无人机所处的第二位置。通过视觉传感器采集无人机所处环境的环境感知数据,通过嗅觉传感器采集无人机所处环境的嗅觉感知数据。根据嗅觉感知数据,确定第二目标区域。基于环境感知数据,确定从第二位置到第二目标区域的第二导航路径,控制无人机按照第二导航路径飞行。

    一种混合精度量化方法、装置、介质及设备

    公开(公告)号:CN118673959B

    公开(公告)日:2024-10-22

    申请号:CN202411153835.0

    申请日:2024-08-21

    Abstract: 在本说明书提供一种混合精度量化方法、装置、介质及设备,通过确定深度神经网络模型中的各层的量化位宽,对深度神经网络模型进行量化,确定候选量化模型,并将样本分别输入深度神经网络模型以及候选量化模型,确定候选量化模型的量化误差、加速比以及压缩效果,进而确定候选量化模型的适应度,最后,根据预设的进化算法以及候选量化模型的适应度,确定深度神经网络模型的目标量化模型,使得混合精度量化方法能够根据少量无标签样本确定深度神经网络模型的目标量化模型,提高了混合精度量化方法的泛用性。

Patent Agency Ranking