-
公开(公告)号:CN117077817A
公开(公告)日:2023-11-17
申请号:CN202311328295.0
申请日:2023-10-13
Applicant: 之江实验室
IPC: G06N20/00 , G06N3/098 , G06F18/214 , G06F18/23213 , G06F18/25 , G06F18/22
Abstract: 本说明书公开了一种基于标签分布的个性化联邦学习模型训练方法及装置。所述任务执行方法包括:根据获取到的目标模型的初始化模型参数,针对每个客户端,将初始化模型参数发送给该客户端,以使该客户端在本地部署待训练模型,并通过该客户端的本地数据,对待训练模型进行训练,并获取各客户端训练更新后的模型参数,以及每个客户端训练各自的待训练模型时所使用的本地数据的标签分布,以得到每个客户端对应的客户端簇。针对每个客户端,融合该客户端对应的客户端簇中包含的各客户端发送的更新后的模型参数,并将融合后参数下发给该客户端,以使该客户端根据所述融合后参数,对本地部署的待训练模型进行参数更新,以通过更新后的模型执行目标任务。
-
公开(公告)号:CN116755893B
公开(公告)日:2023-11-17
申请号:CN202311056655.6
申请日:2023-08-22
Applicant: 之江实验室
IPC: G06F9/50 , G06F16/2457 , G06F16/2455 , G06N3/08
Abstract: 面向深度学习的分布式计算系统的作业调度方法和装置,包括:获取用户输入的作业信息,并存储在数据库中,作业信息包括作业优先级等,并根据作业信息维护一个作业优先级队列;获取集群中各节点的缓存信息;响应于接收到发起作业执行的请求,作业执行根据所述的优先级队列先后顺序执行,将所述作业调度到相应主机节点上执行,执行的结果存储到数据库中;响应于接收到模型更新作业的请求,在所述数据库中查询所述作业所需的数据,计算作业剩余结束时间,并将计算结果保存到数据库中;响应与接收到更新所述队列请求,在所述数据库中查询所需的数据,并根据所述数据更新所述队列。本发明较少依赖用户输入信息,有效提高作业执行时间预测精度。
-
公开(公告)号:CN117032936A
公开(公告)日:2023-11-10
申请号:CN202311267177.3
申请日:2023-09-28
Applicant: 之江实验室
IPC: G06F9/48 , G06F9/50 , G06F18/214 , G06N3/006
Abstract: 本申请涉及一种数据调度方法、装置和计算机设备。所述方法包括:对TPU上的数据进行分块,将加载时间和卸载时间均相同的数据划分为同一数据块;基于数据块所对应的加载时间和卸载时间,得到数据调度模型的初始参数;基于每块TPU存储量的大小,得到数据块占用TPU数量的时间分布;根据数据块占用TPU数量的时间分布,计算资源消耗量;利用粒子群优化算法,对初始数据调度模型的参数进行优化训练,直至按照训练后的数据调度模型进行数据调度的资源消耗量,达到按照预设的最少的TPU数量计算得到的资源消耗量时,停止训练,得到完备数据调度模型;基于完备数据调度模型,对TPU上的数据块进行数据调度。采用本方法能够解决计算机的计算资源消耗高的问题。
-
公开(公告)号:CN116860259A
公开(公告)日:2023-10-10
申请号:CN202311138278.0
申请日:2023-09-05
Applicant: 之江实验室
Abstract: 本说明书公开了一种模型训练和编译器自动调优的方法、装置及设备。所述模型训练的方法包括:获取目标程序,并确定编译器对该目标程序进行编译时的各优化序列;确定出初始优化序列并生成当前样本点,以及,确定初始优化序列对所述目标程序进行编译的第一运行时间;生成邻域样本点,并确定邻域样本点对目标程序进行编译的第二运行时间;判断第一运行时间是否大于第二运行时间,若是,将邻域样本点作为当前样本点;在达到指定迭代次数后,确定运行时间小于预设时间的若干个各候选优化序列,并根据各候选优化序列构建训练样本;通过构建的训练样本对预测模型进行训练。
-
公开(公告)号:CN116779021A
公开(公告)日:2023-09-19
申请号:CN202310329242.4
申请日:2023-03-29
Applicant: 之江实验室
IPC: G16B15/30 , G16B30/00 , G16C20/50 , G06N3/0464 , G06N3/08
Abstract: 一种基于自动特征交叉的药物靶标结合亲和力预测方法,包括:获取药物分子SMILES序列、靶标蛋白氨基酸序列以及固有属性特征;将SMILES序列表示为基于原子和化学键构成的图;分别对药物分子图和氨基酸序列表征学习,获得药物分子的特征嵌入和氨基酸的特征嵌入;对药物分子及靶标蛋白的类别型固有属性特征进行嵌入表征,获得类型型固有属性特征嵌入;使用SENet对前述步骤各类特征嵌入进行相关性建模,动态学习特征重要性;采用自动特征交叉方法对筛选的特征进行特征交叉;基于筛选特征和交叉特征,获得药物分子与靶标蛋白的结合亲和力预测值。本发明能够自适应的学习和融合药物分子和靶标蛋白的特征信息,大大提升了药物分子与靶标蛋白结合亲和力预测的准确度。
-
公开(公告)号:CN116737607A
公开(公告)日:2023-09-12
申请号:CN202311029639.8
申请日:2023-08-16
Applicant: 之江实验室
IPC: G06F12/0875 , G06F12/0888 , G06F12/0895 , G06N3/084 , G06N3/047 , G06N3/048 , G06V10/94 , G06V10/774 , G06V10/82
Abstract: 本申请涉及一种样本数据缓存方法、系统、计算机设备和存储介质。所述方法包括:获取用于训练的样本数据列表;若缓存区域的解码样本数据集中不存在与样本数据列表中第一样本数据匹配的解码样本数据,则从解码样本数据集中确定备选解码样本数据;若第一样本数据的重要度与备选解码样本数据的重要度满足预设条件且第一样本数据的解码资源消耗大于备选解码样本数据的解码资源消耗,则对第一样本数据进行解码处理,得到对应的目标解码样本数据;根据目标解码样本数据对缓存区域的解码样本数据集进行更新。采用本方法减少冗余的IO和考虑了数据解码本身的资源消耗,缩短了整体的训练时长,进而提高了训练效率。
-
公开(公告)号:CN116402165B
公开(公告)日:2023-09-01
申请号:CN202310669720.6
申请日:2023-06-07
Applicant: 之江实验室
Abstract: 本说明书公开了一种算子检测的方法、装置、存储介质以及电子设备,本说明书提供的算子检测方法可以获取待检测算子,将校验数据输入到该待检测算子中,得到该待检测算子输出的第一结果,以及将该校验数据输入到确定出的与待检测算子对应的至少一个参考算子中,得到经过至少一个参考算子对校验数据进行数据处理后所得到的第二结果,最后,根据第一结果以及所述第二结果,对待检测算子进行检测,本方法通过确定出和待检测算子功能相符的参考算子,并通过相同的校验数据分别输入到待检测算子和参考算子,从而通过将得出的结果进行对比,可以对待检测算子进行检测,提高了深度学习模型中算子的功能准确性。
-
公开(公告)号:CN116661574A
公开(公告)日:2023-08-29
申请号:CN202310860078.X
申请日:2023-07-13
Applicant: 之江实验室
IPC: G06F1/20 , G06F18/214
Abstract: 本说明书公开了一种计算设备散热的方法、装置、存储介质及电子设备,本方法通过确定各时刻的计算设备的芯片的特征以及计算设备的散热单元中冷却介质的特征确定训练样本,并获取散热单元的控制指令作为训练样本的标注,然后针对每个特征维度,根据该维度的特征对训练样本进行排序以确定该维度的样本序列,再确定标注相同且连续的各训练样本组成的待选样本组,并确定包含训练样本数量不小于预设数量的待选样本组作为目标样本组,根据各目标样本组以及各目标样本组对应的标注确定控制规则,进一步对计算设备进行散热控制。本方法通过对历史上控制指令、芯片特征以及散热单元中冷却介质的特征的学习生成控制规则,使计算设备可以自行进行散热控制。
-
公开(公告)号:CN116301904B
公开(公告)日:2023-08-22
申请号:CN202310559970.4
申请日:2023-05-18
Applicant: 之江实验室
IPC: G06F8/41 , G06N3/006 , G06N3/0475 , G06N3/08
Abstract: 本发明公开了一种用于深度学习编译器的算子优化加速方法及装置,目的是减少算子优化空间的搜索时间。该方法首先将神经网络抽象成计算图的形式,再对计算图进行图优化,并为优化后的计算图中的每个算子定义优化空间。然后以LightGBM为代价模型,粒子群优化算法为搜索算法对优化空间进行搜索。在每轮搜索中,对搜索算法输出的候选解采用DBSCAN进行聚类和采样,减少在硬件上的实测次数,进一步提升搜索效率。
-
公开(公告)号:CN116521380A
公开(公告)日:2023-08-01
申请号:CN202310819041.2
申请日:2023-07-05
Applicant: 之江实验室
Abstract: 本说明书公开了一种资源自适应协同的模型训练加速方法、装置及设备。所述方法包括:获取不同计算单元对应的计算精度信息以及计算资源信息,基于的计算精度信息以及计算资源信息,生成各资源调用策略;在获取到目标模型的模型数据后,针对目标模型的每个训练阶段,确定该训练阶段所需的目标计算精度以及目标计算资源;确定满足各训练阶段的计算精度需求和计算资源需求的各资源调用策略,作为各候选调用策略;按照指定评估条件在各候选调用策略中选取出目标调用策略;根据目标调用策略调用各计算单元对应的计算资源,以执行目标模型每个训练阶段的训练任务。
-
-
-
-
-
-
-
-
-