-
公开(公告)号:CN110472493B
公开(公告)日:2022-01-21
申请号:CN201910604601.6
申请日:2019-07-05
Applicant: 中国科学院计算技术研究所
IPC: G06K9/00
Abstract: 本发明提出一种基于一致性特征(ConsensusFeatures)的场景分割方法和系统,包括对特征提取器学习到的特征进行实例一致性变换和类别一致性变换,将变换后的特征输入到场景分割子网络,得到原始图像的场景分割结果。本发明提出了一种通过实例一致性变换单元去学习实例层次的一致性特征。另一方面,由于在场景图像中存在着多个同类实例,本发明使用类别一致性单元去学习类层次的一致性特征。这两个单元极大地提高了现有基于全卷积的场景分割模型的性能。
-
公开(公告)号:CN113627498A
公开(公告)日:2021-11-09
申请号:CN202110854800.X
申请日:2021-07-28
Applicant: 中国科学院计算技术研究所
Abstract: 本发明公开了一种人物丑化图像识别模型训练方法,包括以下步骤:将真实图像样本输入到丑化分类器中进行训练以使该其具有图像分类和图像特征提取的功能;冻结该丑化分类器的网络参数并将其作为图像特征提取器,将噪声和该真实图像样本输入到分类有益生成对抗网络进行训练以使其具有生成合成图像样本的功能;将该分类有益生成对抗网络生成的合成图像样本输入到该丑化分类器中进行进一步训练,得到该丑化分类器即为该人物丑化图像识别模型。
-
公开(公告)号:CN110287314B
公开(公告)日:2021-08-06
申请号:CN201910418900.0
申请日:2019-05-20
Applicant: 中国科学院计算技术研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35
Abstract: 本发明涉及一种基于无监督聚类的长文本可信度评估方法,包括:以已知长文本获取训练数据,提取该训练数据的训练特征以构建训练特征向量集,对该训练特征向量集进行无监督聚类,得到多个训练类心;以待评估长文本获取评估数据,提取该评估数据的评估特征向量;获取该评估特征向量相对该训练类心的评估值,并以该评估值得到该待评估长文本的可信度。本发明通过无监督聚类对长文本进行可信度评估,在实施过程中不需要标注数据,节省了人力、物力与时间,避免了数据中标签稀疏带来的困扰;提取了长文本的文本特征,对于可信度评估任务更加适用,使用该模型得到的文本的可信度更具有可解释性,同时在平台之间可以迁移。
-
公开(公告)号:CN107170466B
公开(公告)日:2020-12-29
申请号:CN201710242995.6
申请日:2017-04-14
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供一种基于音频的脚步拖地声的检测方法。该方法包括:对采集到的左右脚双声道音频数据进行分帧处理,以获得相应的音频帧;以从所述音频帧提取的特征向量作为输入,利用分类器获得音频帧属于拖地声的概率和属于正常脚步声的概率,其中,所述分类器通过训练获得的,训练样本包括用于识别正常脚步声的正样本、用于识别拖地声的拖地样本和用于识别非脚步的其它声音的负样本;根据获得的各个音频帧属于拖地声的概率和属于正常脚步声的概率,得出拖地声对应的时间区间。根据本发明的方法能够准确的检测出行走过程中的拖地声,有助于步态检测、跌倒预警等。
-
公开(公告)号:CN109034198B
公开(公告)日:2020-12-11
申请号:CN201810664250.3
申请日:2018-06-25
Applicant: 中国科学院计算技术研究所
IPC: G06K9/62
Abstract: 本发明涉及一种基于特征图恢复的场景分割方法和系统,包括对原始图像进行降采样,得到降采样图像,通过特征学习网络得到该降采样图像的降采样特征图,将该降采样特征图的尺寸恢复为原始图像尺寸,得到上采样特征图,将该上采样特征图输入场景分割网络,得到该原始图像的场景分割结果。本发明利用降采样输入图像可以获得的较快的分割速度;利用原始大小输入图像可以获得的较高的分割精度。此外,本发明还提出了辅助中间层监督和边境区域重加权的方法辅助场景分割神经网络模型的优化过程,从而在保持模型加速的前提下提升加速后模型的分割精度。
-
公开(公告)号:CN110472493A
公开(公告)日:2019-11-19
申请号:CN201910604601.6
申请日:2019-07-05
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提出一种基于一致性特征(ConsensusFeatures)的场景分割方法和系统,包括对特征提取器学习到的特征进行实例一致性变换和类别一致性变换,将变换后的特征输入到场景分割子网络,得到原始图像的场景分割结果。本发明提出了一种通过实例一致性变换单元去学习实例层次的一致性特征。另一方面,由于在场景图像中存在着多个同类实例,本发明使用类别一致性单元去学习类层次的一致性特征。这两个单元极大地提高了现有基于全卷积的场景分割模型的性能。
-
公开(公告)号:CN109657538A
公开(公告)日:2019-04-19
申请号:CN201811309249.5
申请日:2018-11-05
Applicant: 中国科学院计算技术研究所
Abstract: 本发明涉及一种基于上下文信息指导的场景分割方法,包括:以残差结构网络构建基于上下文信息的指导模块;以原始图像为输入,通过多个3×3卷积层输出初级特征图;以该初级特征图为输入,通过多个该指导模块输出中级特征图;以该中级特征图为输入,通过多个该指导模块输出高级特征图;以该高级特征图为输入,通过场景分割子网络,获得该原始图像的场景分割结果。本发明设计的分割网络的参数量小,并且在特征提取时,利用全局特征提取器进一步去修正局部特征和对应的周围上下文特征组合成的联合特征,这使得模型更有利于去学习分割的特征,极大的提高了现有移动端场景分割网络的性能。
-
公开(公告)号:CN108681749A
公开(公告)日:2018-10-19
申请号:CN201810486787.5
申请日:2018-05-21
Applicant: 中国科学院计算技术研究所
CPC classification number: G06K9/6267 , G06K9/6256 , G06Q50/01
Abstract: 本发明提供了一种基于网络社交平台构建隐私信息甄别模型的方法。该方法包括以下步骤:根据网络社交平台上已发布的问题及相关答案之间的结构特征构建由多组分析数据构成的训练样本集,其中,每组分析数据包括问题信息、相关的答案列表信息以及对应的隐私性标签;以所述训练样本集中的问题信息、相关的答案列表信息为输入,以对应的隐私性标签为输出训练深度学习模型,以获得基于所述深度学习模型的隐私信息甄别模型。本发明的隐私信息甄别方法能够对用户在网络社交平台上发布的内容有效地甄别其是否属于隐私信息。
-
公开(公告)号:CN104504024B
公开(公告)日:2018-09-07
申请号:CN201410768704.3
申请日:2014-12-11
Applicant: 中国科学院计算技术研究所
IPC: G06F17/30
Abstract: 本发明提供一种基于微博内容的关键词挖掘方法,对于所有微博文本经分词得到的所有词的集合中的每个词,基于该词在每个微博文本中出现的次数及该微博文本被转发的次数来计算该词的权重;并选取其权重大于预定阈值的词作为从该微博数据集中挖掘的关键词。该方法即考虑了词语在各个微博文本中出现的频率,又考虑了同一微博文本在微博数据集中转发情况对挖掘关键词的准确性的影响,因此提高了获取微博文本关键词的精确度。
-
公开(公告)号:CN104881668B
公开(公告)日:2018-08-10
申请号:CN201510241287.1
申请日:2015-05-13
Applicant: 中国科学院计算技术研究所
IPC: G06K9/46
Abstract: 本发明公开了一种基于代表性局部模式的图像指纹提取方法及系统,涉及图像处理领域,该方法包括将库图像进行图像攻击模拟处理,生成新库图像,并提取所述库图像与所述新库图像的关键点,根据所述关键点,获取局部区块,并根据所述局部区块,生成局部模式并建立局部模式库,从所述局部模式库中获取代表性局部模式;根据所述代表性局部模式,建立所述库图像与所述新库图像的图像指纹,并将所述图像指纹存入图像指纹库;获取新图像,提取所述新图像的新图像指纹,将所述新图像指纹与所述图像指纹库中的图像指纹进行比对,查找库图像中与所述新图像向对应的图像。本发明占用内存少,可以使用优化的机器指令进行加速匹配,适于大规模的图像拷贝检测。
-
-
-
-
-
-
-
-
-