用于生物荧光芯片的自动对焦方法

    公开(公告)号:CN111212237A

    公开(公告)日:2020-05-29

    申请号:CN202010090432.1

    申请日:2020-02-13

    Abstract: 本发明公开了一种用于生物荧光芯片的自动对焦方法,包括以下步骤:自适应窗口选取;自适应阈值选取;计算离焦距离和离焦方向;实现样本对焦。本发明根据微孔式PCR芯片的微孔及排列特征自适应的选择及调整窗口位置,以保证对焦对象及其边界区域位于对焦窗口内;根据对焦对象亮度的高低自适应的调整阈值,变化的阈值给后续不同亮度的样本在其对焦曲线的一致性上奠定了基础;本发明得出了微孔式数字PCR芯片荧光图像随离焦距离的变化、其大于阈值的像素数的变化曲线及其分段函数后,根据分段函数及方向判别方法,只需3个位置的荧光图像,即可得出离焦距离和离焦方向,再需一步即可完成对焦,整个过程仅需4步完成对焦。

    涂覆有锚定物质的零模波导孔的制备方法及波导孔结构

    公开(公告)号:CN111123429A

    公开(公告)日:2020-05-08

    申请号:CN201911350416.5

    申请日:2019-12-24

    Abstract: 本发明提供一种涂覆有锚定物质的零模波导孔的制备方法,该方法通过调节高折射率非反射层的沉积厚度可以缩小零模波导孔的孔内体积,显著减少孔内的游离核苷酸,提高信噪比;通过在孔内部沉积高折射率非反射层材料可以使被激发荧光的位置远离零模波导孔的金属壁,使荧光不会减弱甚至淬灭,荧光效果增强的同时也使得检测更加灵敏;选取设定的高折射率非反射层材料以及沉积厚度(即控制孔内样本与非反射壁的折射率)可以在增强荧光与保证酶活性之间获得最佳平衡;通过使用掩模版和正胶的光刻可以使每个零模波导孔中心底部精确的连接DNA聚合酶,提升孔的利用率。本发明还涉及一种涂覆有锚定物质的零模波导孔结构。

    纳米孔基因测序微电流检测装置及电流稳定的补偿方法

    公开(公告)号:CN111090002A

    公开(公告)日:2020-05-01

    申请号:CN201911350418.4

    申请日:2019-12-24

    Abstract: 本发明提供纳米孔基因测序微电流检测装置,该装置包括对DNA分子流经薄膜上的纳米孔道时发生的电流变化的检测电路,检测电路包括第一电极、第二电极、第三电极和恒电位电路;当工作电极发生偏移时,恒电位电路使对电极对地电位始终跟随参比电极对地电位变化,以使得所述第一电极与第二电极之间保持稳定的电压差。本发明还涉及一种用于纳米孔基因测序微电流稳定的补偿方法。本发明将工作电极检测到的电流信号通过积分放大器变化为电压信号,积分放大器以电容为反馈元件,并且采用两个采样保持电路实现了相关双取样,具有更低的噪声表现且提高了信号的带宽和线性度,同时对电流信号也进行滤波、去噪、补偿等处理,极大地提高了电流检测的准确率。

    超高通量单细胞核酸分子实时荧光定量分析芯片

    公开(公告)号:CN110628567A

    公开(公告)日:2019-12-31

    申请号:CN201910912693.4

    申请日:2019-09-25

    Abstract: 本发明公开了一种超高通量单细胞核酸分子实时荧光定量分析芯片,包括微孔阵列芯片和微流控封装结构,所述微孔阵列芯片设置在所述微流控封装结构内;所述微孔阵列芯片在其基底上设置有至少一个微孔阵列区,所述微孔阵列区具有多个微孔,所述微孔具有在一个微孔中只能容纳单个细胞的尺寸和形状,且所述微孔内壁上修饰有至少一个DNA探针。本发明通过设计具有十万量级、百万量级微孔的芯片,并通过在微孔内修饰DNA探针捕获细胞内的目标核酸分子,可实现十万量级、百万量级的单细胞捕获,并进一步实现原位裂解、核酸扩增,能为超高通量单细胞核酸分子实时荧光定量分析提高芯片基础。

    多孔膜层的制备方法、电化学传感器及其制备方法

    公开(公告)号:CN110044982A

    公开(公告)日:2019-07-23

    申请号:CN201910287083.X

    申请日:2019-04-10

    Abstract: 本发明公开了一种多孔膜层的制备方法,包括将前驱体溶液置于密闭的反应腔室中,使其凝胶化,得到多孔凝胶的步骤。上述的制备方法通过在密闭的反应腔室中使溶胶溶液发生凝胶化,能够避免凝胶的孔隙塌陷,得到孔隙均匀、孔隙率高的多孔膜层。本发明公开了一种电化学传感器,包括第一电极阵列和第二电极阵列,第一电极阵列和第二电极阵列共用第一参比电极,第一参比电极和酶电极的外侧面包覆疏水多孔膜。电化学传感器的集成度高、两个电极阵列共用第一参比电极,能够设置于同一检测通道内,简化了传感器的电极结构。本发明公开了上述电化学传感器的制备方法,制备工序简化、制备效率高。

    电化学检测芯片、电化学传感器及其制备方法和应用

    公开(公告)号:CN109507260A

    公开(公告)日:2019-03-22

    申请号:CN201811652894.7

    申请日:2018-12-29

    Abstract: 本发明公开了一种电化学检测芯片,包括电极层,所述电极层的工作电极包括依次层叠设置的导电层、纳米材料层和凝血反应层;所述凝血反应层产生用于检测凝血酶原时间的电信号,所述纳米材料层传递和放大所述电信号。利用纳米材料层的高导电性、大比表面积以及良好的生物相容性等,实现对凝血酶原时间检测过程中电信号的放大、增强,以提高芯片检测的灵敏度、缩短检测时间。本发明公开了一种电化学传感器,包括上述的电化学检测芯片,能够实现对凝血酶原时间的快速、灵敏检测,且具有较高的检测稳定性和重复性。本发明公开了一种电化学传感器的制备方法,适于制得上述灵敏度高、检测结果准确的电化学传感器。

    压电传感芯片、压电传感器及其制备方法

    公开(公告)号:CN109668952B

    公开(公告)日:2024-12-27

    申请号:CN201811559970.X

    申请日:2018-12-19

    Abstract: 本发明提供了一种压电传感芯片、压电传感器及其制备方法,其中,压电传感芯片包括压电材料层,以及压合设置在所述压电材料层表面的电极层;其中,所述压电材料层划分为测量区域与非测量区域,所述测量区域的厚度小于所述非测量区域的厚度。通过将压电材料层中测量区域的厚度设置为小于非测量区域的厚度,即对压电材料层中对应于测量的区域做减薄处理,当测量区域减薄后能够提高该压电材料层中测量区域的谐振频率,从而提高压电传感芯片的测量灵敏度;此外,由于压电材料层的非测量区域的厚度保持不变,能够保证该压电传感芯片的硬度,保证了压电芯片拥有高基频谐振频率特性的同时,也能保证做制备的压电芯片易夹持、易试用等特点。

Patent Agency Ranking