多模态机器翻译方法、装置、电子设备和存储介质

    公开(公告)号:CN112800785B

    公开(公告)日:2021-07-27

    申请号:CN202110392717.5

    申请日:2021-04-13

    Abstract: 本发明提供一种多模态机器翻译方法、装置、电子设备和存储介质,所述方法包括:确定待翻译的源语言文本;将源语言文本输入至翻译模型中,得到翻译模型输出的目标语言文本;翻译模型是基于样本源语言文本和样本目标语言文本,以及与样本源语言文本匹配的样本图像,联合重建模型训练得到的;翻译模型与重建模型共用特征编码层,模型训练过程中特征编码层用于编码第一序列和第二序列,翻译模型基于第一序列的编码进行翻译,重建模型基于第二序列的编码进行重建,第一序列基于样本源语言文本确定,第二序列基于样本源语言文本中的各实体在样本图像中的区域图像和样本源语言文本的非实体确定,提高了质量提升的可解释性并且降低了翻译的复杂度。

    基于层次化多头交互注意力的对话状态生成方法

    公开(公告)号:CN112131861B

    公开(公告)日:2021-03-16

    申请号:CN202011341577.0

    申请日:2020-11-25

    Abstract: 本发明属于任务型对话技术领域,具体涉及了一种基于层次化多头交互注意力的对话状态生成方法,旨在解决现有技术精度和准确度低以及成本高、效率低的问题。本发明包括:基于文本词典进行对话文本预处理;通过编码器进行各句子的独立编码,获得对话文本的上下文表示;对解码器输入应用自我注意力机制,获得当前时刻的解码器输入向量;应用多头交互式注意力机制,融合字级别和句子级别的上下文表示,获得对话文本当前时刻的上下文向量表示;结合当前时刻的解码器输入向量,通过非线性映射获得实体和状态作为对话文本的对话状态。本发明可以在无字级别标注信息的情况下取得非常好的效果,不仅节约了数据标注的成本,也提高了模型的精确性与精度。

    神经机器翻译模型训练方法、神经机器翻译方法及装置

    公开(公告)号:CN111539229A

    公开(公告)日:2020-08-14

    申请号:CN201910054869.7

    申请日:2019-01-21

    Abstract: 本发明涉及神经机器翻译模型训练方法、神经机器翻译方法及装置。该神经机器翻译方法包括:识别待翻译的源语句中的命名实体;用与命名实体的类别对应的标签替换所识别的命名实体,获得中间源语句;通过神经机器翻译模型翻译中间源语句,获得带有标签的中间目标语句;从预置的命名实体词典和/或命名实体库查找命名实体的译文;以及用查找到的译文替换中间目标语句中相应的标签,获得与待翻译的源语句对应的目标语句。本发明解决了在机器翻译的过程中,低频的命名实体被错翻译或漏翻译的问题。

    多语言自动文摘方法
    14.
    发明授权

    公开(公告)号:CN106874362B

    公开(公告)日:2020-01-10

    申请号:CN201611253245.0

    申请日:2016-12-30

    Abstract: 本发明涉及一种多语言自动文摘方法,包括以下步骤:步骤101,获取多个目标语言文档中的多个谓词论元结构;步骤102,对所述多个谓词论元结构中的每一个谓词论元进行重要性打分;步骤103,根据所述每一个谓词论元的重要性得分,生成目标语言摘要。本发明中,实现了获取指定语言的摘要,且在保证该摘要含有更多的重要信息的信息量时,提高可读性。

    一种双语篇章标注方法
    15.
    发明授权

    公开(公告)号:CN106021224B

    公开(公告)日:2019-03-15

    申请号:CN201610317745.X

    申请日:2016-05-13

    Abstract: 本发明公开了一种双语篇章标注方法,该方法包括:步骤1,对双语句子对中的源语言端和目标语言端句子分别进行自动分词、自动词对齐与自动篇章分析,得到词对齐信息和两端的篇章分析树;步骤2,根据所述步骤1得到的词对齐信息和两端的篇章分析树得到两端句子中基本篇章单元的对应关系;步骤3,根据所述步骤2得到的两端句子中的基本篇章单元及其对应关系,构建双语篇章结构。本发明能够对双语平行句子进行较高一致性的篇章分析。在中英语言对上,经过标注实验的验证:相对于已有的单语篇章分析方法,本发明方法能分析得到一致性程度更高的篇章分析结果,从篇章的切分信息,到篇章的结构信息都有较高的一致性提升。

    文本蕴含识别方法及装置
    16.
    发明公开

    公开(公告)号:CN109033073A

    公开(公告)日:2018-12-18

    申请号:CN201810688172.0

    申请日:2018-06-28

    Abstract: 本发明属于自然语言处理技术领域,具体提供了一种文本蕴含识别方法及装置。旨在解决现有技术需要对句子进行复杂的特征描述和特征提取的问题。本发明的文本蕴含识别方法包括对待识别文本蕴含句对的源句子和目标句子进行依存句法分析,并根据分析结果获取源句子依存三元组集合和目标句子依存三元组集合;对源句子依存三元组集合和目标句子依存三元组集合进行语义关系比较,得到比较结果;根据比较结果预测源句子和目标句子之间的语义蕴含关系。本发明的方法可以从整体角度提升句子之间的比较精度,并且提升句子的依存三元组之间的对齐精度,进而提高语义蕴含关系预测的准确率。本发明的装置同样具有上述有益效果。

    融合规则信息的可控制性对话管理扩展方法

    公开(公告)号:CN108268616A

    公开(公告)日:2018-07-10

    申请号:CN201810009140.3

    申请日:2018-01-04

    Abstract: 本发明属于人机对话技术领域,具体涉及一种融合规则信息的可控制性对话管理扩展方法,旨在解决数据驱动的对话系统通过重新构建交互环境的方式进行扩展时成本高、效率低下的问题,本方法包括:S1,基于交互数据,确定需要扩充的新用户意图,并对原语言理解模块进行扩展;S2,基于新用户意图,构建该新用户意图对应的新对话规则;S3,基于交互数据、原对话管理模块的对话策略、新对话规则,构建新对话管理模块映射空间所需满足的约束;S4,基于S3中得到的新对话管理模块映射空间所需满足的约束,对原对话管理模块进行扩展,生成新对话管理模块。本发明可以对数据驱动的对话系统根据用户反馈进行快速扩展、高效迭代。

    基于文本‑图像匹配的多模态自动文摘方法

    公开(公告)号:CN106997387A

    公开(公告)日:2017-08-01

    申请号:CN201710195587.X

    申请日:2017-03-28

    CPC classification number: G06F16/345 G06K9/00744 G06K9/6201

    Abstract: 本发明提供了一种基于文本‑图像匹配的多模态自动文摘方法,包括:对多模态信息中的文本信息中的句子进行重要性打分;对多模态信息中的视频信息通过镜头边界切割,提取视频的关键帧;对多模态信息中的图像信息和/或视频信息通过文本‑图像匹配模型为图像和/或关键帧找到语义对应的文本;以及根据每一个句子的重要性得分、图片和关键帧所占权重、与文本的语义相关度,以及惩罚冗余项,生成文本摘要。通过训练文本‑图像匹配模型,将图像或视频中的信息利用文本‑图像匹配模型找到对应语义的文本,实现了同时处理文本、图像和视频信息进行文本摘要,使得输出的自动文摘相较传统的纯文本自动文摘结果具有更好的全面性和准确度。

    基于神经机器翻译系统的单词预测方法及系统

    公开(公告)号:CN106844352A

    公开(公告)日:2017-06-13

    申请号:CN201611209226.8

    申请日:2016-12-23

    Abstract: 本发明涉及一种基于神经机器翻译系统的单词预测方法及系统,所述单词预测方法包括:对平行语料进行训练,从训练结果中抽取,获得短语翻译表;对任意平行句对中的源语言句子进行匹配搜索,确定源语言句子中包含的全部源语言短语;从短语翻译表中查找各源语言短语分别对应的目标短语翻译候选集;根据目标短语翻译候选集及神经机器翻译系统翻译所得的部分译文,获得需要鼓励的目标单词集;根据基于神经机器翻译系统所得的注意力概率和目标短语翻译候选集,确定目标单词集中各目标单词的鼓励值;根据各目标单词的鼓励值,获得各目标单词的预测概率。通过引入短语翻译表获得目标单词的鼓励值,并添加到神经翻译模型中,从而可提高目标单词的预测概率。

    一种基于依存连贯性约束的双语词语自动对齐方法

    公开(公告)号:CN102708098B

    公开(公告)日:2015-02-04

    申请号:CN201210175015.2

    申请日:2012-05-30

    Inventor: 宗成庆 王志国

    Abstract: 本发明公开了一种基于依存连贯性约束的双语词对齐方法。该方法首先对训练句子对进行依存句法分析。在训练阶段,利用训练句子对和依存句法树,训练基于源语言端和目标语言端依存连贯性约束的词对齐模型。在测试阶段,利用基于源语言端和目标语言端依存连贯性约束的词对齐模型为测试句子对产生满足源语言端和目标语言端依存连贯性约束的词对齐结果,并将这两个词对齐结果进行合并,产生一个兼顾准确率和召回率的满足双语依存连贯性约束的词对齐结果。本发明相对于现有技术得到的词对齐错误率较低。

Patent Agency Ranking