基于言语行为理论的用户交互意图识别方法及系统

    公开(公告)号:CN107153672A

    公开(公告)日:2017-09-12

    申请号:CN201710171926.0

    申请日:2017-03-22

    Abstract: 本发明涉及一种基于言语行为理论的用户交互意图识别方法及系统,所述用户交互意图识别方法包括:基于外部知识源构建行为标记语词典;根据所述行为标记语词典,自动标注用户在社交媒体平台上输入的在线文本的意图;利用自动标注语料训练基于特征的分类器对所述在线文本的意图进行分类识别,确定用户的交互意图类别。本发明基于言语行为理论的用户交互意图识别方法通过基于外部知识源构建对应不同意图类别的行为标记语词典,并基于行为标记语词典自动标注扩充语料和基于特征分类识别,能够有效识别社交媒体中的用户交互意图,识别准确度高,可用于商务智能、社情舆情、决策评估等领域的意图分析与识别,应用范围广。

    一种基于深度学习的全天候视频监控方法

    公开(公告)号:CN104320617A

    公开(公告)日:2015-01-28

    申请号:CN201410557880.2

    申请日:2014-10-20

    Abstract: 本发明公开了一种基于深度学习的全天候视频监控方法,该方法包括以下步骤:实时采集视频流,基于得到的视频流通过线采样获得多幅原始采样图样本,以及速度采样图样本;对于得到的速度采样图样本进行时空矫正;基于原始采样图和速度采样图,离线训练得到深度学习模型,所述深度学习模型包括分类模型和统计模型;利用得到的深度学习模型对于实时视频流进行人群状态分析。本发明对于不同环境、光照强度、天气情况以及摄像头角度均具有良好的适应性;对于大流量人群涌出等人群拥挤环境,可以保证较高的准确率;计算量小,可以满足实时视频处理的要求,能够广泛地应用于对于公交、地铁和广场等滞留人群密集的公共场所的监控和管理。

    基于视觉大数据驱动的群体性行为分析的视频监控方法

    公开(公告)号:CN103679215A

    公开(公告)日:2014-03-26

    申请号:CN201310746795.6

    申请日:2013-12-30

    Abstract: 一种计算机实现的视频监控方法,包括步骤:接收由摄像机捕获的视频数据;根据接收到的视频数据建立群体性行为模型;估计所述群体性行为模型的参数,获得场景中存在的多种人群行为;使用得到的群体性行为模型获得不同人群的行为特征集;对得到的行为特征集进行转换,并使用转换的行为特征集来针对每种人群行为得到统计的人数值。根据本发明的方法,摄像头角度设置具有普遍适用性,可以用于开放出入口人数统计;并且计算量小,可以满足实时视频处理的要求。

    基于深度神经网络的新闻流行度预测模型训练方法

    公开(公告)号:CN110083699A

    公开(公告)日:2019-08-02

    申请号:CN201910202638.6

    申请日:2019-03-18

    Abstract: 本发明提出了一种基于深度神经网络的新闻流行度预测模型训练方法,包括:获取特定主题设定时间段的新闻文章数据,用Pandas进行数据清洗后按照设定时间长度进行顺次分组,获取按时间顺序排列得到新闻流行度序列;依据所述新闻流行度序列,从第一个流行度开始依次按照采样长度为w的连续序列作为输入样本,并采样其之后一期的数据作为输出样本,构建训练样本集;随机从训练样本集中选择训练样本对基于LSTM网络的新闻流行度预测模型进行训练,并采用Pearson相关系数进行关联性分析删除不良的训练样本,循环训练过程至训练结束。本发明可以获得用来对无趋势性、无季节性及非线性新闻流行度进行较高准确率预测的新闻流行度预测模型。

Patent Agency Ranking