-
公开(公告)号:CN102902981A
公开(公告)日:2013-01-30
申请号:CN201210340160.1
申请日:2012-09-13
Applicant: 中国科学院自动化研究所
Abstract: 本发明公开了一种基于慢特征分析的暴力视频检测方法,包括以下步骤:对已经标好类的视频进行密集轨迹提取,基于轨迹用慢特征分析方法学习出慢特征函数,通过慢特征函数得到视频段的特征表示,最后对提取的特征进行训练并建模;对新来视频进行特征提取,将提取的特征输入到训练得到的模型,得到视频的类别(暴力视频或非暴力视频)。该方法通过密集轨迹提取构建了有效的特征向量,并通过慢特征分析方法学习出了非常具有区分力的视频特征表示。近几年随着社交网站的发展,大量的视频被上传到互联网供用户下载,其中不乏含有暴力内容的视频,这些内容会对青少年产生不良影响,基于慢特征分析的暴力视频检测方法能有效检测出这些不良内容,对建设健康的互联网环境具有重要作用。
-
公开(公告)号:CN101334845A
公开(公告)日:2008-12-31
申请号:CN200710117997.9
申请日:2007-06-27
Applicant: 中国科学院自动化研究所
IPC: G06K9/62
CPC classification number: G06K9/00785
Abstract: 本发明公开一种基于轨迹序列分析和规则归纳的视频行为识别方法,解决人工耗费大的问题,采用将场景中的完整轨迹分割为若干有基本语义的轨迹段,通过轨迹聚类得到若干基本运动模式为原子事件,并用隐马尔科夫模型建模,通过基于最小描述长度准则的规则归纳算法,获取蕴含在轨迹序列中的事件规则,基于事件规则,用扩展的文法分析器对感兴趣事件加以识别。本发明提供完整的视频行为识别框架,在规则归纳过程中考虑视频事件的空时属性,提出了一种多层规则归纳策略,大大提高了规则学习的有效性,推进模式识别在视频行为识别的应用。本发明应用于智能视频监控,自动分析当前监控场景下汽车或行人的运动行为,使计算机协助人或代替人完成监控任务。
-
公开(公告)号:CN111052126B
公开(公告)日:2024-06-04
申请号:CN201780094559.7
申请日:2017-09-04
Applicant: 华为技术有限公司 , 中国科学院自动化研究所
IPC: G06V20/52 , G06V10/774 , G06V10/82 , G06N3/0464
Abstract: 一种行人属性识别与定位方法以及卷积神经网络系统,该方法包括:对待检测图像进行多种不同抽象程度的特征提取,获得行人属性的多种第一特征映射图;对多种第一特征映射图进行卷积,得到多种第二特征映射图,并将每种第二特征映射图映射为多个互有重叠的区域bin,分别对每个bin进行最大池化,得到多种高维特征向量;其中,多个互有重叠的bin均匀地覆盖每种第二特征映射图;将多种高维特征向量处理为低维向量,得到所述行人属性的识别结果;进一步可根据多种第二特征映射图和多种高维特征向量,得到行人属性的定位结果。所述方法能够克服视频监控中的不利因素,对行人属性进行更好的识别与定位。
-
公开(公告)号:CN114724174A
公开(公告)日:2022-07-08
申请号:CN202210161681.4
申请日:2022-02-22
Applicant: 中国科学院自动化研究所
IPC: G06V40/10 , G06K9/62 , G06V10/774 , G06V10/764
Abstract: 本发明提供一种基于增量学习的行人属性识别模型训练方法及装置,方法包括:获取用于增量学习的行人属性识别数据集,确定任务学习顺序;使用初始任务中的训练样本训练初始行人属性识别模型;对训练数据缓存池中代表性样本以及模型缓存池中的缓存模型进行更新;重复执行下述步骤,直至数据集中全部任务学习完成,得到行人属性识别模型;根据模型缓存池中缓存模型,确定预测模型及待训练模型;基于预测模型对当前任务的所有训练样本进行预测,得到更新后的当前任务;根据代表性样本和更新后当前任务中的训练样本,训练待训练模型,得到第一目标模型。本发明有效提高了行人属性识别模型在增量学习过程中对已有属性识别准确率,缓解遗忘灾难问题。
-
公开(公告)号:CN103136540A
公开(公告)日:2013-06-05
申请号:CN201310087343.1
申请日:2013-03-19
Applicant: 中国科学院自动化研究所
IPC: G06K9/62
CPC classification number: G06K9/4676 , G06K9/00335 , G06K9/469
Abstract: 本发明公开了一种基于隐结构推理的行为识别方法,包括以下步骤:提取训练数据的局部特征并聚类,构建一个码本词袋,利用局部特征的时空分布建立码本之间的共生关系图,结合局部特征在人体上的分布特性推理出共生关系图中的隐结构并将其反馈到共生关系图中得到一个具有多层结构信息的图模型;利用图模型获取训练数据中局部特征的稳定性系数并构建训练数据的特征向量,训练分类器模型;提取未知视频中的局部特征,利用图模型计算其稳定性系数,构建视频的特征向量,用分类器进行分类。该方法通过研究人体结构特征来学习局部特征之间的结构信息,可以更好的对主体的行为进行描述。本方法可以用于公共安全领域,如异常行为检测等;也可用于人机交互。
-
-
-
-