-
公开(公告)号:CN108270608A
公开(公告)日:2018-07-10
申请号:CN201710004638.6
申请日:2017-01-04
Applicant: 中国科学院声学研究所 , 北京中科信利技术有限公司
IPC: H04L12/24
Abstract: 本发明提供了一种链路预测模型的建立方法,所述链路预测模型包括:时序受限玻尔兹曼机模型和梯度提升决策树模型;所述方法包括:从互联网或其它多媒体中抓取大量的网络数据,对网络数据进行预处理,将网络数据划分为历史数据和现有数据,输入时序受限玻尔兹曼机模型,训练出模型参数;提取网络数据节点对的网络拓扑特征,形成特征集并输入梯度提升决策树模型,训练出模型参数;所述链路预测模型包括训练好的时序受限玻尔兹曼机模型和梯度提升决策树模型。基于该方法建立的链路预测模型,本发明还提供了一种链路预测方法,该方法能够预测网络下一状态的所有链接。
-
公开(公告)号:CN104571485B
公开(公告)日:2017-12-12
申请号:CN201310517226.4
申请日:2013-10-28
Applicant: 中国科学院声学研究所 , 北京中科信利技术有限公司
Abstract: 本发明提出了一种基于Java Map的人机语音交互系统及方法,所述系统包含:语音识别模块,用于接收用户输入的语音信息,并将语音信息识别为文本数据;口语理解模块,用于对文本数据进行语义挖掘,并且转换为机器能够识别的形式,其中语义挖掘中基于Java Map的上下文关键语义要素的存储与利用策略将会对用户输入的上下文信息进行整合,且所述语义挖掘为将识别的文本进行语义关键要素的抽取;对话管理模块,用于控制人机交互的对话流程;语言生成模块,用于将零碎的答案进行整合,得到通顺、符合人的逻辑语言表示形式的文本;语音合成模块,用于将生成的答案文本转化为语音信息,并将语音信息播报给用户。
-
公开(公告)号:CN104571485A
公开(公告)日:2015-04-29
申请号:CN201310517226.4
申请日:2013-10-28
Applicant: 中国科学院声学研究所 , 北京中科信利技术有限公司
Abstract: 本发明提出了一种基于Java Map的人机语音交互系统及方法,所述系统包含:语音识别模块,用于接收用户输入的语音信息,并将语音信息识别为文本数据;口语理解模块,用于对文本数据进行语义挖掘,并且转换为机器能够识别的形式,其中语义挖掘中基于Java Map的上下文关键语义要素的存储与利用策略将会对用户输入的上下文信息进行整合,且所述语义挖掘为将识别的文本进行语义关键要素的抽取;对话管理模块,用于控制人机交互的对话流程;语言生成模块,用于将零碎的答案进行整合,得到通顺、符合人的逻辑语言表示形式的文本;语音合成模块,用于将生成的答案文本转化为语音信息,并将语音信息播报给用户。
-
公开(公告)号:CN108270608B
公开(公告)日:2020-04-03
申请号:CN201710004638.6
申请日:2017-01-04
Applicant: 中国科学院声学研究所 , 北京中科信利技术有限公司
IPC: H04L12/24
Abstract: 本发明提供了一种链路预测模型的建立方法,所述链路预测模型包括:时序受限玻尔兹曼机模型和梯度提升决策树模型;所述方法包括:从互联网或其它多媒体中抓取大量的网络数据,对网络数据进行预处理,将网络数据划分为历史数据和现有数据,输入时序受限玻尔兹曼机模型,训练出模型参数;提取网络数据节点对的网络拓扑特征,形成特征集并输入梯度提升决策树模型,训练出模型参数;所述链路预测模型包括训练好的时序受限玻尔兹曼机模型和梯度提升决策树模型。基于该方法建立的链路预测模型,本发明还提供了一种链路预测方法,该方法能够预测网络下一状态的所有链接。
-
公开(公告)号:CN105335446A
公开(公告)日:2016-02-17
申请号:CN201410398780.X
申请日:2014-08-13
Applicant: 中国科学院声学研究所 , 北京中科信利技术有限公司
IPC: G06F17/30
Abstract: 本发明涉及一种基于词矢量的短文本分类模型生成方法,包括:采集数据,并对所采集的数据进行领域标注,将这些已标注的数据作为训练数据;对训练数据做预处理;查询词矢量词典,将训练数据中所包含的文本数据转化为向量数据,并且将所述向量数据按照领域进行分隔;对每一个领域内的向量数据采用高斯模型进行模型训练,得到高斯模型参数的最优值,从而得到该领域所对应的高斯模型;所有训练数据的各个领域所对应的高斯模型组成分类模型。
-
-
-
-