-
公开(公告)号:CN106257498A
公开(公告)日:2016-12-28
申请号:CN201610599656.9
申请日:2016-07-27
Applicant: 中南大学
IPC: G06K9/62
Abstract: 本发明提出了一种基于异构纹理特征的锌浮选状态划分方法,综合了能够对高频段纹理特征效果较好的灰度共生矩阵算法,以及对中低频纹理图像具有较好建模效果的高斯马尔科夫随机场算法提取锌浮选图像纹理特征,并对将其高斯归一化作为纹理特征向量。在集成聚类算法中,首先采用效率相对较高的划分聚类,消除噪声点和离群点的影响,再使用聚类质量较好、稳定性较高的层次聚类算法对划分聚类输出的聚类中心进行组合,进而得到最终的聚类结果。实验证明,本发明所提取的纹理特征量具有良好的模式可分性,集成聚类算法可以很好地将不同状态的泡沫区分开来,且这种方法可以直接在计算机上实现,成本低,效率高,易于实施。