-
公开(公告)号:CN109325398A
公开(公告)日:2019-02-12
申请号:CN201810702472.X
申请日:2018-06-30
Applicant: 东南大学
Abstract: 本发明公开了一种基于迁移学习的人脸属性分析方法,属于计算推算的技术领域,尤其涉及识别人脸属性的计算机视觉技术领域。本发明在多属性预测网络上联合训练样本集以预测特征属性,将收敛的多属性预测网络迁移到主属性预测网络,继续训练主属性预测网络并微调参数直至主属性预测网络的损失函数收敛,所述主属性包含但不限于基于逻辑回归的人脸属性以及基于线性回归的人脸属性的主属性,既防止了局部极小,又避免了任务过于复杂导致的精度降低,在实际应用中更加精确灵活。
-
公开(公告)号:CN109145717B
公开(公告)日:2021-05-11
申请号:CN201810719313.0
申请日:2018-06-30
Applicant: 东南大学
Abstract: 本发明公开了一种在线学习的人脸识别方法,属于计算推算的技术领域,尤其涉及人脸识别的计算机视觉技术领域。该方法利用外部数据集训练人脸特征提取器,提取本地数据集中各成员对应的参考特征以构成参考特征空间,对比待测试样本的特征向量和参考特征以确定与待测试样本的特征向量最相似的参考特征,在与待测试样本的特征向量最相似的参考特征满足阈值要求时,以与待测试样本的特征向量最相似的参考特征所属成员的身份为待测试样本的身份,否则,返回待测试样本身份识别失败的消息,根据待测试样本的预测特征向量与其在参考特征空间中对应的真实特征向量的差异更新参考特征空间,适应人脸特征随时间推移发生的变化,尤其适合频繁变更成员的场合。
-
公开(公告)号:CN109145717A
公开(公告)日:2019-01-04
申请号:CN201810719313.0
申请日:2018-06-30
Applicant: 东南大学
CPC classification number: G06K9/00268 , G06K9/00718 , G06N3/0454 , G06N3/084
Abstract: 本发明公开了一种在线学习的人脸识别方法,属于计算推算的技术领域,尤其涉及人脸识别的计算机视觉技术领域。该方法利用外部数据集训练人脸特征提取器,提取本地数据集中各成员对应的参考特征以构成参考特征空间,对比待测试样本的特征向量和参考特征以确定与待测试样本的特征向量最相似的参考特征,在与待测试样本的特征向量最相似的参考特征满足阈值要求时,以与待测试样本的特征向量最相似的参考特征所属成员的身份为待测试样本的身份,否则,返回待测试样本身份识别失败的消息,根据待测试样本的预测特征向量与其在参考特征空间中对应的真实特征向量的差异更新参考特征空间,适应人脸特征随时间推移发生的变化,尤其适合频繁变更成员的场合。
-
-