一种基于模式转移的虚拟机混合备用动态可靠性评估方法

    公开(公告)号:CN110187990B

    公开(公告)日:2021-11-16

    申请号:CN201910466719.7

    申请日:2019-05-31

    Applicant: 东北大学

    Abstract: 本发明提出一种基于模式转移的虚拟机混合备用动态可靠性评估方法,包括:采集资源和性能数据,并进行特性选择及标准化处理;对标准化后数据,预测基于HSMM的虚拟机失效概率;基于多值决策图的冷热备份云系统进行可靠性评估;为了达到准确的对系统的可靠性进行定量评估,本发明简化MDD的终端值,将从根节点到1的所有路径的发生概率的总和作为系统的可靠性。并将虚拟机分成三种不同模式即操作模式、冷备份模式和热备份模式,采用模式转移,使备用虚拟机在需要时替换失效的工作虚拟机来维持系统的运行,采用多值决策图进行可靠性评估。通过三组对比试验,验证得到本发明的平均响应时间和失效率低,可靠性高,从侧面验证本发明方法的正确性。

    一种支持能耗优化的虚拟机模式转移方法

    公开(公告)号:CN110196756B

    公开(公告)日:2020-07-10

    申请号:CN201910466889.5

    申请日:2019-05-31

    Applicant: 东北大学

    Abstract: 本发明提出一种支持能耗优化的虚拟机模式转移方法,包括:初始化参数;判断热模式调整的数量m是否大于0,进行虚拟机的模式转移;部署当前虚拟机系统;对每台服务器资源剩余量,从大到小进行排序;sum1与需要休眠的热模式虚拟机的数量相比较,进行模式转移,更新各模式集合;部署当前虚拟机系统;对每台服务器资源剩余量,从大到小再次进行排序;sum2与需要唤醒的冷模式虚拟机的数量相比较,进行模式转移,更新各模式集合;选择整个服务器处于睡眠状态中的冷模式虚拟机,还是运行的服务器中冷模式下虚拟机问题,对系统的能耗影响很大,本发明在既支持性能保障又满足虚拟机的可靠性的基础上,探讨虚拟机模式转移过程中的节能问题,达到了很好的效果。

    一种基于负载预测的Hadoop计算任务推测执行方法

    公开(公告)号:CN110221909A

    公开(公告)日:2019-09-10

    申请号:CN201910510535.6

    申请日:2019-06-13

    Applicant: 东北大学

    Abstract: 本发明提出一种基于负载预测的Hadoop计算任务推测执行方法,包括:资源管理器对备份任务数自适应调整,得到最大备份任务数;预测执行任务完成时间;将最大备份任务数与APPmaster设置的备份任务数比较,取最小值作为备份任务数阈值;判断备份任务数是否小于等于备份任务数阈值;判断任务数是否小于总任务数;预测备份任务完成时间;判断备份任务完成时间和执行任务完成时间大小,确定是否开启备份;本发明保证了当集群计算资源紧张的情况下,备份任务的开启不会对其他作业产生影响;执行任务的完成时间预测算法,有效避免了迟滞任务的误判导致计算资源浪费;备份任务完成时间预测算法,节约计算节点的计算资源,减少作业的完成时间,提高了集群的整体性能。

    一种支持能耗优化的虚拟机模式转移方法

    公开(公告)号:CN110196756A

    公开(公告)日:2019-09-03

    申请号:CN201910466889.5

    申请日:2019-05-31

    Applicant: 东北大学

    Abstract: 本发明提出一种支持能耗优化的虚拟机模式转移方法,包括:初始化参数;判断热模式调整的数量m是否大于0,进行虚拟机的模式转移;部署当前虚拟机系统;对每台服务器资源剩余量,从大到小进行排序;sum1与需要休眠的热模式虚拟机的数量相比较,进行模式转移,更新各模式集合;部署当前虚拟机系统;对每台服务器资源剩余量,从大到小再次进行排序;sum2与需要唤醒的冷模式虚拟机的数量相比较,进行模式转移,更新各模式集合;选择整个服务器处于睡眠状态中的冷模式虚拟机,还是运行的服务器中冷模式下虚拟机问题,对系统的能耗影响很大,本发明在既支持性能保障又满足虚拟机的可靠性的基础上,探讨虚拟机模式转移过程中的节能问题,达到了很好的效果。

    一种Hadoop平台计算节点负载预测方法

    公开(公告)号:CN110149237A

    公开(公告)日:2019-08-20

    申请号:CN201910510953.5

    申请日:2019-06-13

    Applicant: 东北大学

    Abstract: 本发明提出一种Hadoop平台计算节点负载预测方法,包括:基于滑动窗口二次检测算法的数据预处理方法;基于ARIMA算法的节点负载线性预测方法;基于RNN算法的节点负载非线性残差预测方法;将ARIMA算法与RNN算法预测出来的结果进行线性相加作为最终的预测结果;本发明通过对各个结算节点历史数据的分析,可以提取有价值的信息,进而合理预测下一时间段内的计算节点的负载,精确预测计算节点的负载可以为资源管理器合理地给AppMaster分配资源提供依据,进而缓解高负载节点的压力,提升低负载节点的计算资源利用率,提高Hadoop集群的可靠性和性能。本发明通过ARIMA和RNN模型组合,更加精确的对负载进行预测。

    一种面向视频目标检测的帧级别特征聚合方法

    公开(公告)号:CN109993095A

    公开(公告)日:2019-07-09

    申请号:CN201910230227.8

    申请日:2019-03-26

    Applicant: 东北大学

    Abstract: 本发明提供一种面向视频目标检测的帧级别特征聚合方法,涉及计算机视觉技术领域。本发明提供的面向视频目标检测的帧级别特征聚合方法,首先通过特征网络从单帧图像中提取深层的特征;然后使用光流网络FlowNet提取帧间的光流;并基于光流将相邻帧的帧级别特征对齐到当前帧,实现帧级别的特征传播;最后通过映射网络和权重放缩网络计算放缩余弦相似性权重,并使用放缩余弦相似性权重聚合多帧特征,生成聚合后的特征;本发明提供的面向视频目标检测的帧级别特征聚合方法,使得权重分配更加合理,将聚合后的特征输入到视频目标检测网络中,能够使在运动模糊、像素低、镜头变焦、遮挡等复杂场景下的视频检测具有较好的检测效果,具有鲁棒性。

    一种基于负载预测的Hadoop计算任务初始分配方法

    公开(公告)号:CN110262897B

    公开(公告)日:2023-01-31

    申请号:CN201910510964.3

    申请日:2019-06-13

    Applicant: 东北大学

    Abstract: 本发明提出一种基于负载预测的Hadoop计算任务初始分配方法,包括:使用延迟调度策略的AppMaster选择方法,开启AppMaster;基于BP神经网络的节点,计算资源分配数量;使用DRF算法的用户队列和用户作业选择方法,开启子任务;本发明基于延迟调度策略的AppMaster选择算法,提高了AppMaster运行时的稳定性,保证了作业的正常运行。基于BP神经网络的节点计算资源分配算法,减少高负载标签计算节点分配的任务量,增加低负载标签计算节点分配的任务量,提高了集群整体的稳定性和性能。基于DRF的用户队列和用户作业选择算法,当作业所属的队列资源不够时,根据占主导地位的计算资源使用情况来选择叶子队列和用户作业,最终达到合理化计算任务初始分配,均衡集群负载,提高集群性能的目标。

    基于特征选择的季节型非平稳并发量能耗分析方法

    公开(公告)号:CN110348122B

    公开(公告)日:2023-01-17

    申请号:CN201910624856.9

    申请日:2019-07-11

    Applicant: 东北大学

    Abstract: 本发明提供一种基于特征选择的季节型非平稳并发量能耗分析方法,涉及云计算技术领域。该方法针对Web应用特性建立能耗模型。首先,基于负载检测工具提取出相关多维特征,并使用工具测出对应能耗数据;然后,对提取的数据进行预处理,提高数据质量与建模效率;然后,采用效率高的过滤型特征选择算法与性能好的装箱式特征选择算法进行相关特征的选择;最后,对筛选完的多维特征以及能耗数据进行回归分析,建立能耗模型。本发明方法同时考虑多种对云服务中心整体能耗有贡献的资源,提取多种数据特征,并对提取的数据进行预处理,提高了数据质量与建模效率,也使能耗模型更加精确。

    面向季节型非平稳并发量的平均响应时间评估方法

    公开(公告)号:CN110413657B

    公开(公告)日:2021-08-17

    申请号:CN201910624505.8

    申请日:2019-07-11

    Applicant: 东北大学

    Abstract: 本发明提供一种面向季节型非平稳并发量的平均响应时间评估方法,涉及云计算技术领域。该方法首先基于自相关系数法判定云服务系统中的请求并发量中的季节型非平稳并发量;然后建立基于RNN‑LSTM神经网络的季节型非平稳并发量预测模型,并进行季节型非平稳并发量预测;建立基于RBF的云服务系统平均响应时间预测模型,将预测的用户季节型非平稳并发量、CPU利用率、内存利用率这些影响云服务平均响应时间的资源状态信息预处理完之后作为输入,输出为云服务系统的平均响应时间大小。本发明方法克服了传统的负载均衡策略的不足,提高了季节型非平稳并发量的预测精度,能及时对服务性能作出评估响应,使云计算系统能更好的为用户提供服务。

    一种基于模式转移的虚拟机混合备用动态可靠性评估方法

    公开(公告)号:CN110187990A

    公开(公告)日:2019-08-30

    申请号:CN201910466719.7

    申请日:2019-05-31

    Applicant: 东北大学

    Abstract: 本发明提出一种基于模式转移的虚拟机混合备用动态可靠性评估方法,包括:采集资源和性能数据,并进行特性选择及标准化处理;对标准化后数据,预测基于HSMM的虚拟机失效概率;基于多值决策图的冷热备份云系统进行可靠性评估;为了达到准确的对系统的可靠性进行定量评估,本发明简化MDD的终端值,将从根节点到1的所有路径的发生概率的总和作为系统的可靠性。并将虚拟机分成三种不同模式即操作模式、冷备份模式和热备份模式,采用模式转移,使备用虚拟机在需要时替换失效的工作虚拟机来维持系统的运行,采用多值决策图进行可靠性评估。通过三组对比试验,验证得到本发明的平均响应时间和失效率低,可靠性高,从侧面验证本发明方法的正确性。

Patent Agency Ranking