一种微纳光纤阵列应力定位分析系统

    公开(公告)号:CN113138045A

    公开(公告)日:2021-07-20

    申请号:CN202110467002.1

    申请日:2021-04-28

    Applicant: 东北大学

    Abstract: 本发明提出了一种微纳光纤阵列应力定位分析系统,将微纳光纤阵列、平面基底上和装压力触头的点阵基底相组合,形成完整的信号感知系统。微纳光纤阵列与传导光纤通过光信号收发模块通往信号处理模块,得到完整的信号收集、处理系统。光信号收发系统发出光信号进入微纳光纤阵列后,点阵基底受到的外力作用将被传递至压力触头上,使得透射光信号的相位和强度发生了变化,再传递回到信号收集器中并由处理器完成信号解析,达到计算出应力空间分布强度的目的,从而据此达到应力定位分析的作用。精准的应力定位分析可以准确知道具体部分的受力大小,进行快速分析。该系统可直接穿戴在人体手指或肩膀上,或植入人体细胞组织内部,促进人机互联技术的发展。

    一种用于热流体流量非接触式检测的方法和装置

    公开(公告)号:CN110646044B

    公开(公告)日:2021-03-26

    申请号:CN201910985301.7

    申请日:2019-10-16

    Applicant: 东北大学

    Inventor: 李晋 杨俊彤 张华

    Abstract: 本发明属于光纤传感技术领域,尤其涉及一种用于热流体流量非接触式检测的方法和装置。该方法包括如下步骤:S1、将密封管道穿过加热单元和能量输出单元,在密封管道的外壁均匀安装多个温度传感器;S2、通入流体;S3、每个温度传感器获得温度数据,并将所述温度数据输入预先训练的神经网络模型,得到流体的流量信息;其中,所述预先训练的神经网络模型为基于预设历史时间段内的温度和对应的流体的流量信息,采用神经网络算法进行训练后的模型。该方法基于预先设定的模型,通过温度传感器测定流体温度,进而获得管道内流体的流量信息。

    一种基于应力差分析非接触式流量的检测装置及方法

    公开(公告)号:CN110706835B

    公开(公告)日:2021-02-05

    申请号:CN201910984755.2

    申请日:2019-10-16

    Abstract: 本发明属于核电工程技术领域,尤其涉及一种基于应力差分析非接触式流量的检测装置及方法。该装置包括密封管道、加热单元和能量输出单元,所述密封管道穿过加热单元和能量输出单元,在密封管道的每一管道弯曲处设置一组应力传感器,每组应力传感器均包括第一应力传感器和第二应力传感器,所述第一应力传感器和第二应力传感器分别设置于管道外壁弯曲处的内侧和外侧。本发明利用高灵敏度光纤应力传感器探测管壁承受压力的变化,根据流体流量与压力对应的物理关系,获得管道内流体的流量信息。

    一种基于微纳多芯特种光纤的矢量应力计

    公开(公告)号:CN111487000A

    公开(公告)日:2020-08-04

    申请号:CN202010317735.2

    申请日:2020-04-21

    Applicant: 东北大学

    Abstract: 本发明提出了一种基于微纳多芯特种光纤的矢量应力计,将单模光纤A、单模光纤B与微纳多芯特种光纤熔接,微纳多芯特种光纤由四个包层纤芯,一个中心纤芯和多芯光纤包层,表面涂覆聚合物,聚合物表面刻制光栅。首先,宽带光源发出的光进入单模光纤A的纤芯A全反射传输,当光到达熔接点时,一部分光进入微纳多芯特种光纤,分别在四个包层纤芯,一个中心纤芯和多芯光纤包层中传输;另一部分光进入聚合物传输,并受到光栅的实时调制。所有光信号在单模光纤B和纤芯B后回到光谱分析仪,得到透射光谱。该应力计采用全光纤结构设计,具备高灵敏度和柔性易封装特性,可用于穿戴式行为监测及辅助设备,实现对受力方向和大小的感知及交互。

    一种用于分辨癌变细胞的全光纤pH值监测装置

    公开(公告)号:CN111307780A

    公开(公告)日:2020-06-19

    申请号:CN202010318629.6

    申请日:2020-04-21

    Applicant: 东北大学

    Abstract: 本发明公开了一种用于分辨癌变细胞的全光纤pH值监测装置,该装置包括基底、正常样品输入端、正常样品输出端、待测样品输入端、待测样品输出端、待测样品微通道、正常样品微通道、全光纤PH探头、CCD观测器、微流泵、光学处理器。其中,全光纤PH探头由微纳光纤环,PH功能聚合物分散量子点和传导光纤构成。该装置集成了微纳米光纤环、新型纳米功能材料,提高了癌症细胞早期筛查中对微弱特征信号的探测能力,同时提供了一种可视化的癌变细胞可视化监测方法。

    一种用空心光纤锥光镊分类和收集大气PM2.5粒子的装置

    公开(公告)号:CN104777602B

    公开(公告)日:2017-11-03

    申请号:CN201510193962.8

    申请日:2015-04-23

    Applicant: 东北大学

    Inventor: 李晋 吴迪 吕日清

    Abstract: 本发明公开了一种用空心光纤锥光镊分类和收集大气PM2.5粒子的装置,包括532nm半导体激光器1、半透半反镜2、空心光纤锥3、粒子分离池4、高倍生物显微镜5、计算机控制单元6、垫片7、分流垫片8、石英窗口片9、粒子悬浮液10、PM2.5粒子11。光入射到微米尺寸的空心光纤锥3后,可在其锥尖附近形成倏逝场光镊,利用该光镊产生的光学俘获力可实现对微小粒子的操控。本发明提出了一种利用该结构实现对大气PM2.5粒子分类和收集的方法。通过改变光学俘获力的大小和角度,可从复杂组分的大气PM2.5粒子中分离出不同质量的粒子,并移动到不同的收集容器内,进行相应的实验研究。

    一种介质硅光子晶体光纤及其制作方法

    公开(公告)号:CN107290820A

    公开(公告)日:2017-10-24

    申请号:CN201710348304.0

    申请日:2017-05-19

    Applicant: 东北大学

    Abstract: 本发明公开了一种介质硅光子晶体光纤及其制作方法,包括介质硅纳米粒子、微米光纤、宽谱激光器、光谱分析仪、光学UV胶、石英毛细管、显微镜、紫外光固化器。本发明将介质硅纳米粒子均匀分散在光学UV胶中,借助宽谱激光器和光谱分析仪实时监测透射光谱变化,利用紫外光固化器固化UV胶来获得固体光子晶体结构,并通过显微镜实时观测光子晶体光纤结构的形成过程。介质硅纳米粒子具备局域光场增强和零后向散射特点,通过本发明公布的制作方法获得的介质硅光子晶体光纤,有助于新型生化传感及光子器件的研制。

    一种硅纳米粒子微结构涂层光纤及其制作方法

    公开(公告)号:CN107179578A

    公开(公告)日:2017-09-19

    申请号:CN201710347374.4

    申请日:2017-05-19

    Applicant: 东北大学

    Inventor: 李晋 范蕊 胡海峰

    CPC classification number: G02B6/02295 C03C25/12 C03C25/42

    Abstract: 本发明公开了一种硅纳米粒子微结构涂层光纤及其制作方法,将介质硅纳米粒子在去离子水中的均匀性分散,介质硅纳米粒子在微米单模光纤表面的自沉积组装,煅烧加固。本发明利用重力作用下介质硅纳米粒子的自然沉积,以及纳米粒子自身的静电吸附作用在单模光纤表面制备介质硅微结构涂层。介质硅纳米粒子具备局域光场增强和零后向散射特点,通过本发明公布的制作方法获得的介质硅光子晶体光纤,有助于新型生化传感及光子器件的研制。

    一种用于磁性纳米粒子自组装光子晶体光纤的装置

    公开(公告)号:CN106950642A

    公开(公告)日:2017-07-14

    申请号:CN201710236262.1

    申请日:2017-04-12

    Applicant: 东北大学

    CPC classification number: G02B6/02295

    Abstract: 本发明公开了一种用于磁性纳米粒子自组装光子晶体光纤的装置,包括宽谱激光器、单模光纤、微量液体注射器、进液口、石英毛细管、左高压电磁线圈、右高压电磁线圈、高倍显微观测器、紫外光固化器、出液口、微量液体收集器、探测器。本发明利用微量生物注射器将含有磁性纳米粒子的UV胶液体注入石英毛细管,借助高频磁场使磁性纳米粒子完成周期性排列的光子晶体结构,使用高倍显微观测器实时监测纳米粒子自组装结构形貌,并通过宽谱激光器和探测器实时监测透射光谱变化,启动紫外光固化器得到自组装光子晶体光纤。相比于传统光子晶体光纤制作工艺,该方法成本低、制备速度快、所需设备简单、光纤参数可灵活控制,可以节省光子晶体光纤的制作成本。

    基于磁流体填充光子晶体微腔的磁场和温度同时测量方法

    公开(公告)号:CN104075754B

    公开(公告)日:2016-06-22

    申请号:CN201410294039.9

    申请日:2014-06-27

    Applicant: 东北大学

    Inventor: 赵勇 张亚男 李晋

    Abstract: 本发明提出了基于磁流体填充光子晶体微腔的磁场和温度同时测量方法。通过将两种不同类型的磁流体分别填充在一个光子晶体波导平板中两个不同区域的空气孔中,形成两个级联的光子晶体微腔,这样光子晶体波导的输出光谱中就会出现两个相互独立的谐振谷(对应两个谐振波长)。随着外界磁场或温度的变化,两种填充磁流体的折射率均会发生不同程度的变化,从而使光子晶体波导输出光谱中的两个谐振波长发生移动,且两个谐振波长对磁流体折射率变化的敏感度不一致。最后,采用双波长矩阵法,根据两个谐振波长的移动量反推出外界磁场和温度的变化量,实现对磁场和温度的同时测量。计算可得,最小可检测的磁场变化量为1.333Oe,最小可检测的温度变化量为0.301K。

Patent Agency Ranking