-
公开(公告)号:CN108921670A
公开(公告)日:2018-11-30
申请号:CN201810724191.4
申请日:2018-07-04
Applicant: 重庆大学 , 重庆医药数据信息科技有限公司
Abstract: 本发明公开了一种融合用户潜在兴趣、时空数据和类别流行度的药品交易推荐方法,包括从电商平台的数据集中获取用户购买药品的购买记录数据,并对购买记录数据进行整理得到用户-药品评分矩阵;基于购买记录数据中相似用户的购买记录建立用户潜在兴趣模型,并基于用户潜在兴趣模型获取用户潜在兴趣数据;将用户潜在兴趣数据合并到用户-药品评分矩阵;基于购买记录数据中用户购买过的药品所属类别的流行度和用户对该类别的偏爱建立类别相关模型;对合并了用户潜在兴趣数据的用户-药品评分矩阵进行矩阵分解,并将分解得到的用户偏好预测矩阵和类别相关模型进行线性融合生成推荐列表。本发明有效解决了现有技术中评分矩阵稀疏性对推荐效率造成影响的问题。
-
公开(公告)号:CN106779797A
公开(公告)日:2017-05-31
申请号:CN201610991870.9
申请日:2016-11-10
Applicant: 重庆医药数据信息科技有限公司 , 重庆大学
IPC: G06Q30/02
CPC classification number: G06Q30/0202
Abstract: 本发明提出了一种基于反比例多项式函数萤火虫优化算法的支持向量机药品预测方法,包括如下步骤:S1,获取药品销售数量数据生成学习样本;S2,确定SVM的常数c和核函数σ的取值范围,以及迭代结束条件即迭代次数;S3,初始FA算法,根据每一次迭代计算萤火虫光强值I,判断是否对萤火虫光强度I进行位置更新;S4,判断迭代结束条件,找到最优二维向量(c,g),将该最优二维向量(c,g)代入SVM向量机进行训练和验证,对学习样本进行调整,最终得到药品销售预测结果。
-