-
公开(公告)号:CN108447059A
公开(公告)日:2018-08-24
申请号:CN201810311096.1
申请日:2018-04-09
Applicant: 华侨大学
IPC: G06T7/00
Abstract: 本发明提出一种全参考光场图像质量评价方法。考虑到人眼视觉特性对结构、对比度等较为敏感,在频域里,利用哈尔变换提取高频边缘信息和低频亮度信息,计算频域边缘相似性和亮度相似性;在空域里,提取图像对比度结构特征和亮度特征,分别计算空域对比度结构相似性和亮度相似性;最后将频域和空域信息进行融合得到最终光场图像质量预测分数。该方法计算简单,复杂度低,能很好的评价光场图像质量分数。
-
公开(公告)号:CN107507166A
公开(公告)日:2017-12-22
申请号:CN201710600174.5
申请日:2017-07-21
Applicant: 华侨大学
CPC classification number: G06T7/0004 , G06K9/4647 , G06K9/6269 , G06T2207/30168
Abstract: 本发明涉及一种基于支持向量回归的无参考屏幕图像质量评估方法,计算方向梯度直方图,作为失真屏幕图像的特征信息,利用支持向量回归(SVR)网络进行训练,得到屏幕图像特征信息与主观质量分数的映射关系模型,以准确评估屏幕图像质量。本发明所述的方法无需参考屏幕图像,计算得到的客观分数与人眼视觉感知具有较高的一致性,且其计算简单。
-
公开(公告)号:CN107105297A
公开(公告)日:2017-08-29
申请号:CN201710357483.4
申请日:2017-05-19
Applicant: 华侨大学
IPC: H04N19/597 , H04N19/176 , H04N19/109 , H04N19/59
Abstract: 本发明公开了一种针对3D‑HEVC深度图帧内预测编码的快速优化方法,包括:对当前编码块CU计算其像素方差以及对角像素差的绝对值之和,根据当前编码块的方差以及对角像素差值的绝对值之和设定阈值,通过阈值比较,判定是否提前终止当前CU的深度划分;根据当前预测块PU外圈像素差的绝对值之和,设定阈值,通过阈值比较当前预测块PU是否属于平滑类型,从而跳过SDC编码,进一步降低计算复杂度。本发明能够在保持3D‑HEVC编码效率的前提下,有效地降低深度图帧内预测编码计算复杂度。
-
公开(公告)号:CN106780452A
公开(公告)日:2017-05-31
申请号:CN201611114594.4
申请日:2016-12-07
Applicant: 华侨大学
CPC classification number: G06T7/0002 , G06T2207/20164 , G06T2207/30168
Abstract: 本发明涉及一种结合小波和角点特征的全参考屏幕图像质量评估方法。该方法首先分别提取参考屏幕图像和失真屏幕图像的角点特征相似性图,并以小波变换系数幅值来权衡参考屏幕图像的视觉敏感度,基于该视觉敏感度对角点特征相似性图进行加权融合,从而计算得到失真屏幕图像质量分数。本发明充分利用了角点特征对于图像局部结构的描述能力且考虑到了人眼视觉感知对屏幕图像中不同区域的视觉敏感程度不同,具有较好的屏幕图像质量评估性能,且计算简单。
-
公开(公告)号:CN103533330A
公开(公告)日:2014-01-22
申请号:CN201310481195.1
申请日:2013-10-15
Applicant: 华侨大学
IPC: H04N13/00 , H04N19/50 , H04N19/177 , H04N19/176
Abstract: 本发明为一种基于数据重用的多视点多描述视频编解码方法,根据多视点视频序列经空间水平和垂直下采样后产生的四个子序列非常相近的特点,将这四个子序列两两组合形成两个描述,编码时对每个描述中的一个子序列直接用标准的多视点视频编码器进行编码,另一子序列的各宏块则根据其性质不同,采用三种不同的数据重用方式进行预测编码;本发明所提出的方法简单易行,在提高多视点视频编码容错能力的同时,保持了较高的编码效率并大大降低了编码的计算复杂度。
-
公开(公告)号:CN120088349A
公开(公告)日:2025-06-03
申请号:CN202510562636.3
申请日:2025-04-30
Applicant: 华侨大学
IPC: G06T9/00 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于Vision‑Mamba CNN的端到端图像压缩方法及装置,涉及图像处理领域,包括:获取待压缩的图像并输入到经训练的图像压缩模型,先经过非线性变换网络,得到潜在表示并分别输入到第一量化器和超先验变换网络,得到量化后的潜在表示和超先验变换的潜在表示;超先验变换的潜在表示经过量化,并依次经过第二编码器、第二解码器和超先验反变换网络,得到超先验变换的第二潜在表示特征;量化后的潜在表示和超先验变换的第二潜在表示特征输入到上下文模块,得到高斯分布,量化后的潜在表示依次经过第一编码器和第一解码器并结合高斯分布,得到第一潜在表示特征并输入到非线性反变换网络,得到压缩后的图像,本发明解决了压缩效率与重建质量低的问题。
-
公开(公告)号:CN119741304B
公开(公告)日:2025-05-06
申请号:CN202510262624.9
申请日:2025-03-06
Applicant: 华侨大学 , 厦门松霖科技股份有限公司
Abstract: 本发明公开了一种基于三维人脸几何结构的无参考质量评估方法及装置,涉及计算机视觉领域,方法包括:三维人脸网格模型重建;计算映射关键点和提取关键点之间的欧几里得距离,获得几何一致性分数;用三维人脸分割算法划分人脸区域,计算高斯曲率得到区域曲率分数;计算模型表面的平滑度,检测模型表面是否存在不自然的突起或瑕疵,获得平滑度分数;将几何一致性分数、区域曲率分数和平滑度分数按照加权比例进行融合,输出三维人脸网格模型的综合质量分数。本发明无需依赖数据库中的标准人脸模型,能够基于人脸几何特征和区域性分析对单个重建的三维人脸网格模型质量进行全面评估,适用于智能美容、精准医疗等个性化重建场景。
-
公开(公告)号:CN119863405A
公开(公告)日:2025-04-22
申请号:CN202510341442.0
申请日:2025-03-21
Applicant: 华侨大学
IPC: G06T5/77 , G06T5/60 , G06V10/42 , G06V10/44 , G06V10/80 , G06V10/82 , G06V20/40 , G06N3/0455 , G06N3/0464
Abstract: 本发明一种基于频域融合的大面积缺损视频修复方法及装置,涉及视频处理技术领域,针对现阶段缺损视频修复方法主要局限于小面积缺损场景,对大面积缺损的视频内容修复能力不足,难以生成合理的视觉修复结果的问题,提出了一种有效的解决方法,方法包括以下步骤:首先,获取缺损的视频帧序列,对视频帧序列进行下采样;接着,使用堆叠的频域融合残差块对下采样后的缺损视频帧进行全局信息建模,频域融合残差块由两个自适应频域交叉融合模块依次连接而成;然后,利用堆叠的时间Transformer模块优化多帧之间的时间一致性;最后,进行上采样以重建视频帧,得到最终修复的视频。本发明能够在大范围缺损区域中生成视觉上合理、内容流畅自然的视频修复效果。
-
公开(公告)号:CN119809940A
公开(公告)日:2025-04-11
申请号:CN202510287141.4
申请日:2025-03-12
Applicant: 华侨大学 , 信泰(福建)科技有限公司
IPC: G06T3/4076 , G06N3/0464 , G06N3/048 , G06T3/4046 , G06V10/44 , G06V10/80 , G06V10/82
Abstract: 一种基于状态模型的光场图像超分辨率重建方法和装置,包括:构建浅层特征提取模块,用于对输入的待重建的光场图像的子孔径图像形式提取浅层特征;利用状态空间模型构建深层特征提取单元;基于所述深层特征提取单元构建光场空角特征重建模块,用于对所述浅层特征重建光场空角特征;基于所述深层特征提取单元构建光场结构特征重建模块,用于对所述浅层特征重建光场结构特征;构建高分辨率图像重建模块,用于将所述浅层特征、所述光场空角特征和所述光场结构特征进行层次特征融合和上采样得到重建高分辨率光场图像。本发明通过利用状态空间模型的动态特性,显著提升光场图像超分辨率方法的全局空角信息表征能力和细节重建能力。
-
公开(公告)号:CN119205752B
公开(公告)日:2025-03-14
申请号:CN202411703532.1
申请日:2024-11-26
Applicant: 华侨大学 , 厦门松霖科技股份有限公司
IPC: G06T7/00 , G06N3/045 , G06V10/26 , G06V10/52 , G06V10/54 , G06V10/80 , G06V10/82 , G06V20/40 , H04N17/00
Abstract: 本发明公开了一种基于注意力引导的屏幕内容视频质量评价方法及装置,涉及视频质量评价领域,包括:构建时空融合的屏幕内容视频质量评价模型并训练,得到经训练的屏幕内容视频质量评价模型,屏幕内容视频质量评价模型包括空域质量评价分支和时域质量评价分支;获取屏幕内容视频并提取得到若干个碎片化视频和若干个关键帧;将每个碎片化视频和关键帧输入经训练的屏幕内容视频质量评价模型,分别经过空域质量评价分支和时域质量评价分支,得到空域质量分数和时域质量分数,两者结合得到屏幕内容视频的质量分数。本发明解决现有视频质量评价方法的敏感性差,视觉质量评价准确度低等问题。
-
-
-
-
-
-
-
-
-