ISP参数预测方法及装置
    131.
    发明公开

    公开(公告)号:CN117058023A

    公开(公告)日:2023-11-14

    申请号:CN202310967661.0

    申请日:2023-08-02

    Abstract: 本发明提供一种ISP参数预测方法及装置,该方法包括:将待处理RAW图像输入特征提取器中,得到第一特征矩阵;将第一特征矩阵输入自注意力层,得到自注意力层输出的注意力图,将注意力图输入多尺度Swin Transformer模型,得到第二特征矩阵;将第二特征矩阵输入第一分支和第二分支,得到待处理RAW图像中每个像素对应的ISP参数最优值和置信分数;将像素对应的ISP参数最优值和置信分数相乘后计算平均值,得到待处理RAW图像对应的ISP参数最优值。本发明对任意RAW图像均可自动预测最优ISP参数,且预测参数适用于全局图像,提高成像质量和效率。

    视频特征提取方法、装置及电子设备

    公开(公告)号:CN115311595B

    公开(公告)日:2023-11-03

    申请号:CN202210771422.3

    申请日:2022-06-30

    Abstract: 本发明提供一种视频特征提取方法、装置及电子设备,涉及视频处理技术领域,可以应用于视频特征提取的场景。该视频特征提取方法包括:获取视频图像和视频图像对应的音频数据;将音频数据转换为声谱图,得到声谱图像;将视频图像和声谱图像输入至视频特征提取模型,得到视频特征提取模型输出的视频特征;其中,视频特征提取模型是基于样本视频数据和对偶式对比学习模型对基础神经网络模型进行预训练得到的,对偶式对比学习模型用于对样本视频数据经基础神经网络模型处理后输出的第一多模态样本特征矩阵分别进行行维度和列维度上的对比学习。本发明提供的技术方案可以提高视频特征提取的准确性和泛化性。

    基于各向异性卷积的图像分类方法及系统

    公开(公告)号:CN111126494B

    公开(公告)日:2023-09-26

    申请号:CN201911360305.2

    申请日:2019-12-25

    Abstract: 本发明涉及深度学习与图像分类领域,具体涉及一种基于各向异性卷积的图像分类方法及系统,目的在于解决当图像分辨率低、物体尺度和形态多变等情况下难以保证物体分类识别的精度的问题。本发明的图像分类方法包括:步骤A1,根据设定的标准图像大小,将训练图像与待分类图像都进行预处理;步骤A2,利用利用损失函数与预处理后的训练样本对神经网络进行训练优化,其中,神经网络包括各向异性卷积层;步骤A3,利用训练好的神经网络对预处理后的待分类图像进行特征提取与图像分类。本发明的神经网络能快速提取判别性特征因子,准确锁定图像中的物体轮廓,较好应对小图像、多形变等分类难题,从而充分挖掘了图像的空间信息,提高了物体分类的准确度。

    基于多阶段迁移学习的标志检测模型训练及标志检测方法

    公开(公告)号:CN111062885B

    公开(公告)日:2023-09-12

    申请号:CN201911252628.X

    申请日:2019-12-09

    Inventor: 胡卫明 刘冰

    Abstract: 本发明属于计算机视觉领域,具体涉及一种基于多阶段迁移学习的标志检测模型训练及标志检测方法、系统、装置,旨在解决现有标志检测模型因标志样本较少导致检测准确率低的问题。本系统模型训练方法包括基于ImageNet数据集中选取的样本对标志检测模型进行预训练,得到第一模型;基于合成标志样本对第一模型进行微调训练,得到第二模型;基于真实标志样本对第二模型进行训练,得到第三模型;并将第三模型作为训练好的标志检测模型;检测方法包括获取待检测的标志图像;通过上述模型训练方法获取的标志检测模型对标志图像进行目标标志检测。本发明增加了标志样本的数量,提高了标志检测模型检测的准确率。

    基于卷积神经网络的视频目标跟踪与分割方法及系统

    公开(公告)号:CN112861652B

    公开(公告)日:2023-04-28

    申请号:CN202110076328.1

    申请日:2021-01-20

    Abstract: 本发明属于视频目标跟踪与分割领域,具体涉及了一种基于卷积神经网络的视频目标跟踪与分割方法及系统,旨在解决现有图像检测方法难以实现大规模视频的多目标跟踪与分割的问题。本发明包括:对输入视频进行目标检测、分割、图像裁剪等图像预处理操作;通过多种数据组织方式对视频跟踪进行训练,分别是预训练、迁移学习和精细训练,使得卷积神经网络具备对复杂场景的适应能力,同时,利用视频检测结果进行不断的初始化以及重新初始化;通过重分类器对视频目标轨迹进行重新的类别判断与打分,获得输入视频各设定类别目标的分类结果。本发明在保证效率的前提下,实现了大规模视频中高精度、高准确性的像素级多目标跟踪与分割。

    人体行为识别方法、装置、电子设备及可读存储介质

    公开(公告)号:CN115909479A

    公开(公告)日:2023-04-04

    申请号:CN202211289157.1

    申请日:2022-10-20

    Abstract: 本发明提供一种人体行为识别方法、装置、电子设备及可读存储介质,其中人体行为识别方法包括:从压缩视频数据中提取压缩域信息,压缩域信息中包括多个I帧、残差以及运动矢量;将各I帧及各目标残差所对应的深层特征进行融合处理,得到各I帧对应的局部时空特征;将相邻两个局部时空特征进行融合处理,得到压缩视频数据对应的全局时空特征;基于全局时空特征、运动矢量及残差,确定压缩视频数据对应的目标特征,并基于目标特征确定压缩视频数据对应的人体行为识别结果。通过将各I帧及各目标残差进行融合,能得到表达能力更强的局部时空特征以及全局时空特征,基于全局时空特征、运动矢量及残差进行人体行为识别,能够提高人体行为识别的准确率。

    基于多阶段预训练的无参考图像质量检测方法及系统

    公开(公告)号:CN115908307A

    公开(公告)日:2023-04-04

    申请号:CN202211427497.6

    申请日:2022-11-15

    Abstract: 本发明属于图像处理领域,具体涉及一种基于多阶段预训练的无参考图像质量检测方法及系统。本发明方法包括顺次通过第一特征提取器、第二特征提取器对待检测图像进行特征提取,获取图像特征;所述第一特征提取器为图像复原网络中的编码器,所述第二特征提取器为多个并行设置的结构一致的特征提取子网络,基于不同IQA数据集采用图像质量评估方法进行整体训练后获取;依据所述图像特征,通过图像质量检测网络,得到第二检测结果;所述图像质量检测网络基于跨数据集质量检测相关性和自注意力机制构建。本发明提高了对不同类别图像进行质量检测时准确性、泛化性。

    一种分类模型训练方法、装置及设备

    公开(公告)号:CN115795355A

    公开(公告)日:2023-03-14

    申请号:CN202310095677.7

    申请日:2023-02-10

    Abstract: 本发明实施例涉及人工智能领域,公开了一种分类模型训练方法、装置及设备。本发明实施例涉及的分类模型训练方法,其特征在于,所述方法包括:获取待训练样本集进行特征提取,得到第一特征向量,计算得到原型特征向量;调用预设的损失调节器针对待训练的分类模型对应的损失函数进行参数调整,得到目标分类模型。这样,可以在模型训练过程中,基于当前学习结果及时施加相应的策略调整,提高了分类模型在小样本学习环境中训练的准确性,进而提高了训练后模型进行分类作业的正确率。

    基于特征变换度量网络的少样本人体行为识别方法及系统

    公开(公告)号:CN112001345B

    公开(公告)日:2022-09-20

    申请号:CN202010893758.8

    申请日:2020-08-31

    Abstract: 本发明涉及一种基于特征变换度量网络的少样本人体行为识别方法及系统,包括:对多个原始视频进行特征图提取,得到各原始视频的空间特征图;并划分成支持特征图和查询特征图;根据支持特征图和查询特征图,得到变换支持特征图和变换查询特征图;进而得到特征度量距离;根据特征度量距离及查询视频的行为类别,建立识别模型;根据识别模型及待识别视频,确定待识别视频对应的行为类别。本发明基于特征变换网络,通过将特征转移到行为类别中心的偏移位置,能够减小特征类内距离及增大特征类间差异,极大地减小分类难度;并进一步基于特征度量网络,可提高特征度量的精确度,从而可提高少样本人体行为识别精度。

Patent Agency Ranking