-
公开(公告)号:CN112949628B
公开(公告)日:2023-04-18
申请号:CN202110168050.0
申请日:2021-02-07
Applicant: 中国科学院计算技术研究所
IPC: G06V10/25 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0442 , G06N3/08
Abstract: 本发明提供了一种基于嵌入‑混合的轨迹数据增强及轨迹识别方法。所述轨迹数据增强方法包括:将轨迹数据中的每条轨迹转换成相应感兴趣点的集合;基于所有感兴趣点的总集计算包含每个感兴趣点编码的嵌入矩阵;基于所述嵌入矩阵确定每一条轨迹的轨迹编码向量;对任意两条或更多条轨迹的编码向量进行加权融合,获得新的编码向量;按照步骤S3的逆过程,对所获得的编码向量进行解码获得新的轨迹数据。本发明的轨迹数据增强方法可以有效地应用在轨迹数据上,可以同时针对轨迹数据的顺序性、空间性、语义性进行数据增强工作。既不会破坏轨迹数据的顺序性,又能考虑到轨迹数据的空间性和语义性。进而可以达到提升轨迹识别模型精度的效果。
-
公开(公告)号:CN112202848B
公开(公告)日:2021-11-30
申请号:CN202010968137.1
申请日:2020-09-15
Applicant: 中国科学院计算技术研究所
IPC: H04L29/08 , H04L12/721 , H04L12/727 , H04L12/729
Abstract: 本发明提出一种基于深度强化学习的无人系统网络自适应路由方法,旨在解决现有技术中节点的高速移动、频繁变化的网络拓扑,无法提供自适应路由策略的技术问题。所述方法包括:所有节点以一个自适应的时间间隔发送HELLO信息包;任一节点收到其邻居节点发送的HELLO信息包后,更新该节点的邻居表中该邻居节点的节点信息;建立基于深度强化学习的路由策略算法框架;设计基于深度强化学习的路由策略实现方法。本发明具备良好的模型泛化能力,能泛化于具有不同网络规模和不同节点移动速度的网络上,使得本发明更适用于具有动态变化的无人系统网络。
-
公开(公告)号:CN113222020A
公开(公告)日:2021-08-06
申请号:CN202110521364.4
申请日:2021-05-13
Applicant: 中国科学院计算技术研究所厦门数据智能研究院
Abstract: 本发明公开了一种基于数据转换和知识蒸馏的域增量学习方法,该方法用旧模型识别新数据,将其划分成公有数据和私有数据两部分,然后采用迁移学习将私有数据转换成公有数据,最后对公有数据和私有数据采用不同的损失优化训练模型。本发明所述的一种基于数据转换和知识蒸馏的域增量学习方法,通过对于旧模型无法正确识别的私有数据,采用交叉熵损失计算,能够学习新的知识;通过对旧模型可以正确识别的公有数据和转换数据,采用蒸馏损失计算,用旧模型指导新模型的学习,能够对旧知识进行记忆;通过两种损失优化训练模型,能够实现新旧任务的性能平衡;本方法无需存储旧数据,减小了数据储存的开销。
-
公开(公告)号:CN113205058A
公开(公告)日:2021-08-03
申请号:CN202110536364.1
申请日:2021-05-18
Applicant: 中国科学院计算技术研究所厦门数据智能研究院
Abstract: 本发明公开了一种防止非活体攻击的人脸识别方法,包括以下步骤:步骤一:训练2D人脸识别模型和3D人脸识别模型;步骤二:对人脸进行录入;步骤三:对人脸进行识别,在对人脸进行识别时,通过测温热成像模块判定检测人脸是真实人脸还是立体模型人脸,并结合2D与3D人脸识别模型进行联合判断。本发明所述的一种防止非活体攻击的人脸识别方法,区别于传统的2D人脸识别,新加入的3D人脸识别模型可基于深度信息提取不同人脸的曲面特征,可在2D人脸识别基础上对抗照片、视频等平面攻击,且该3D人脸识别模型区别于一般的3D防伪或人脸验证模型,可以独立识别不同人脸,具备人脸识别功能。
-
公开(公告)号:CN112734029A
公开(公告)日:2021-04-30
申请号:CN202011599910.8
申请日:2020-12-30
Applicant: 中国科学院计算技术研究所
IPC: G06N3/08
Abstract: 本发明提供了一种神经网络通道剪枝的方法、存储方法及电子设备,其基于最大迭代剪枝周期获取每个迭代剪枝周期内待剪枝的通道的权重衰减系数,并在每个迭代剪枝周期内基于当前周期的权重衰减系数调整待剪枝的通道的权重,以重新训练待剪枝的神经网络直至最大迭代剪枝周期结束。本发明的方法使得神经网络的结点信息在迭代剪枝过程中能够得到更加充分的利用,从而弱化剪枝带来的模型性能下降。
-
公开(公告)号:CN110062476B
公开(公告)日:2021-04-02
申请号:CN201910237579.6
申请日:2019-03-27
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提出一种分布式工业无线网介质访问控制方法及系统,包括:分布式工业无线网中欲发送报文的发送节点向接收节点发送传输请求,接收节点成功接收到传输请求后,向发送节点的邻居节点广播功率竞争启动报文;邻居节点根据功率竞争启动报文中的功率要求,参与功率竞争并发送竞争报文至接收节点;接收节点收到竞争报文后,发送竞争结束报文至邻居节点,邻居节点根据竞争结束报文判断其是否竞争成功,若成功,则邻居节点和发送节点均发送报文通过功率域上的多路接入被接收节点同时接收,否则仅发送节点均发送报文至接收节点。本发明可应用于工业无线网络,实现功率区分多路访问的低延迟分批竞争MAC,降低接入时延,提升工业无线网络的工作效率。
-
公开(公告)号:CN112308865A
公开(公告)日:2021-02-02
申请号:CN202011182532.3
申请日:2020-10-29
Applicant: 中国科学院计算技术研究所厦门数据智能研究院
Abstract: 本发明公开了一种融合UNet模型与解剖学特征的乳腺钼靶图像分割方法,包括如下步骤:S1、生成掩码图;S2、训练UNet模型;S3、预分割;S4、预分割胸肌区域后处理;S5、预分割乳头区域后处理。本发明融合了语义分割模型UNet和解剖学特征,引入了损失函数Lovasz‑Softmax Loss,并根据解剖学特征对UNet模型的预分割结果进行后处理,得到适应于各种复杂乳腺情况的乳腺钼靶胸肌、乳头定位算法,解决了现实复杂情况下乳腺钼靶图的胸肌区域和乳头区域定位的稳定性问题。
-
公开(公告)号:CN112184743A
公开(公告)日:2021-01-05
申请号:CN202011182514.5
申请日:2020-10-29
Applicant: 中国科学院计算技术研究所厦门数据智能研究院
Abstract: 本发明公开了一种乳腺钼靶图像中胸肌和乳头区域的分割预标注方法,包括如下步骤:S1、提取乳腺主体图;S2、定位斜侧位胸肌分割线;S3、定位双视图的乳头区域;S4、生成胸肌和乳头的区块标注信息;S5、检验修正。本发明在原始乳腺钼靶图像的基础上,快速大批量地自动生成乳腺钼靶图像中胸肌区域和乳头区域的高质量预标注分割信息,解决了目前存在的标注效率低下、分割标准差异大的问题,降低了对后续人工的要求,使得标注效率大幅度提高,从而产生适合于语义分割神经网络的高质量的训练数据集。
-
公开(公告)号:CN112183481A
公开(公告)日:2021-01-05
申请号:CN202011182517.9
申请日:2020-10-29
Applicant: 中国科学院计算技术研究所厦门数据智能研究院
IPC: G06K9/00
Abstract: 本发明公开了一种基于结构光摄像头的3D人脸识别方法,其包括以下步骤:以下步骤:通过图像采集装置分别采集待识别个体的3D人脸图像;利用PCL点云库对3D人脸图像进行点云处理,分别得到高精度伪RGB图和低精度伪RGB图;构建人脸识别模型并输入高精度伪RGB图、低精度伪RGB图,提取特征向量Ai作为对比基准和特征向量Bi,通过计算特征向量Bi与特征向量Ai的相似度,判断相似度最高的特征向量Bi与特征向量Ai之间的距离是否大于预定阈值,是则识别成功,否则识别失败;本发明3D人脸图像通过点云处理后在人脸识别模型进行处理分析,充分利用低精度点云与高精度点云之间的特征关联,有效提高了在结构光摄像头进行人脸识别的准确率。
-
公开(公告)号:CN112085747A
公开(公告)日:2020-12-15
申请号:CN202010937149.8
申请日:2020-09-08
Applicant: 中国科学院计算技术研究所厦门数据智能研究院
Abstract: 本发明公开了一种基于局部关系指导的图像分割方法,包括如下步骤:S1、在卷积神经网络模型中设计两个分支,第一分支为异同判断模块,第二分支保留原有的分割模块;S2、异同判断模块输出得到待分割图像的局部关系图r,并通过已有分割标注信息的变换进行监督;S3、分割模块输出初步分割结果S4、将局部关系图r与初步分割结果融合,通过定义的引导公式进行引导,调整初步分割结果生成最终分割结果p。本发明将像素局部关系信息作用到初步分割结果中,使得像素点的输出能显式利用周围像素点的分类信息和周围像素点与中心像素点的关系信息,克服了现有技术无法有效利用边界信息的缺陷,提高图像分割的准确性,同时有效降低了学习的难度。
-
-
-
-
-
-
-
-
-