一种用于清洁质谱仪离子源极片的自动清洗装置

    公开(公告)号:CN112605069A

    公开(公告)日:2021-04-06

    申请号:CN202011479929.9

    申请日:2020-12-15

    Applicant: 暨南大学

    Abstract: 本发明公开一种用于清洁质谱仪离子源极片的自动清洗装置,包括离子源单元、红外激光单元和仪器壳体,其中,红外激光单元包括激光发射组件和聚焦透镜,使用时,调整红外激光单元的位置,使其位于离子源极片的底部,激光发射组件开启,调整聚焦透镜与激光发射组件的位置,便于激光光斑聚焦,移动红外激光单元以便将离子源极片中的离子束孔周围的区域临时加热到80‑250℃之间,并保持10min左右的时间,使得沉积在离子源极片中的离子束孔周围的区域的电绝缘体涂层在真空高温中升华而蒸发,从而实现在不需要手动拆卸仪器的情况下自动清洗离子源极片,同时,聚焦透镜与激光发射组件之间的距离能够调整,提高自动清洗装置的使用效率。

    CO2吸收阱及用其改善大气挥发性有机物检测峰形的方法

    公开(公告)号:CN111013375A

    公开(公告)日:2020-04-17

    申请号:CN201911397914.5

    申请日:2019-12-30

    Applicant: 暨南大学

    Abstract: 本发明公开一种二氧化碳吸收阱,包括:变径石英玻璃管,与变径石英玻璃管端口连接的变径聚四氟乙烯两通,在变径石英玻璃管变径处设有脱脂棉,以及填充于变径石英玻璃管内的二氧化碳吸收剂。本发明还公开了利用上述二氧化碳吸收阱改善大气挥发性有机物检测峰形的方法。本发明公开的二氧化碳吸收阱可以有效解决因二氧化碳干扰而导致大气挥发性有机物检测峰形出现双头峰的现象。

    具有质谱样品快速干燥功能的质谱仪及质谱分析方法

    公开(公告)号:CN109545647A

    公开(公告)日:2019-03-29

    申请号:CN201811405450.3

    申请日:2018-11-23

    Applicant: 暨南大学

    Abstract: 本发明公开了一种具有质谱样品快速干燥功能的质谱仪及质谱分析方法。该质谱仪包括真空进样机构、真空泵组件、离子源、离子检测器以及质量分析器;真空进样机构包括真空箱、密封盖以及设在真空箱内的靶座组件和驱动组件,真空箱具有真空腔以及连通真空腔的进样孔,驱动组件用于驱动靶座组件移动,当靶座组件移动至密封进样孔的内侧开口时,靶座组件与密封盖之间形成过渡腔。真空泵组件包括分子泵以及前级泵,分子泵连通真空腔,分子泵还连通前级泵,前级泵连通进样孔;离子源用于将样品靶上的样品电离成离子;质量加速器用于对各离子进行加速,离子检测器用于检测各质量离子强度。该质谱仪分析速度快、检测灵敏度高、分辨率高和重现性好。

    一种气溶胶质量浓度计算方法、装置、介质及计算机设备

    公开(公告)号:CN119223821A

    公开(公告)日:2024-12-31

    申请号:CN202411265130.8

    申请日:2024-09-10

    Applicant: 暨南大学

    Abstract: 本发明提供了一种气溶胶质量浓度计算方法、装置、介质及计算机设备,方法包括,在使用进样模块将气溶胶样本聚焦为颗粒束后,接收颗粒束中的进样颗粒到达测径模块的第一位置所产生的双峰测径信号;使用质谱模块对进样颗粒进行分析得到质谱数据;基于质谱数据,计算单类别颗粒的原始源解析分布;利用双峰测径信号,对原始源解析分布进行数量校正得到单类别颗粒的真实源解析分布;基于真实源解析分布,计算单类别颗粒的质量浓度;本方法通过对某种颗粒物的原始源解析数据在各个粒径段范围内进行校正,计算出气溶胶样品中单类别颗粒物的真实粒径分布,进而得到颗粒物的质量浓度。

    拓宽空气动力学透镜粒径传输范围的进样装置及质谱仪

    公开(公告)号:CN118824835A

    公开(公告)日:2024-10-22

    申请号:CN202411015331.2

    申请日:2024-07-26

    Applicant: 暨南大学

    Abstract: 本发明公开了一种拓宽空气动力学透镜粒径传输范围的进样装置及质谱仪,其中进样装置包括:气溶胶输送管、第一聚焦件、临界孔板;第一聚焦孔的内部固定设置有聚焦孔板;聚焦孔板上开设有第二聚焦孔,第二聚焦孔用于再次限缩气溶胶样本中的颗粒分布;第一聚焦件与临界孔板相互配合形成涡流腔,涡流腔用于生成涡流以对穿过第二聚焦孔的气溶胶样本进行整流。通过涡流腔中的涡流对气溶胶样本进行整流,能够有效地减小气溶胶样本的束宽,提高空气动力学透镜对大直径颗粒的传输效率,使用本申请的进样装置,能够有效地拓宽空气动力学透镜的颗粒传输范围,提高质谱仪的粒径检测范围,获得更全面的数据,还能够更好地理解和解释颗粒物的行为和效应。

    一种检测纳米气溶胶颗粒的方法及系统

    公开(公告)号:CN117929206A

    公开(公告)日:2024-04-26

    申请号:CN202410302180.2

    申请日:2024-03-18

    Applicant: 暨南大学

    Abstract: 本发明公开一种检测纳米气溶胶颗粒的方法及系统,涉及环境检测技术领域,方法:(1)生成惰性粒子的基质气溶胶;(2)对所述基质气溶胶进行干燥;(3)对干燥后的基质气溶胶进行荷电,得到带电基质气溶胶;(4)通过纳米气溶胶分级装置筛分需要检测的纳米气溶胶颗粒,得到指定粒径的双极性纳米气溶胶;(5)使得带电基质气溶胶吸附双极性纳米气溶,形成基质纳米气溶胶;(6)通过单颗粒气溶胶质谱仪对基质纳米气溶胶进行检测。系统:包括依次连通的气溶胶雾化发生器、气溶胶扩散干燥管、气溶胶荷电器、凝结容器和单颗粒气溶胶质谱仪,还包括纳米气溶胶分级装置。实现了纳米气溶胶颗粒的高效在线检测。

    基于四极杆质谱的锂离子电池电解液泄漏检测系统及方法

    公开(公告)号:CN117870970A

    公开(公告)日:2024-04-12

    申请号:CN202410057665.X

    申请日:2024-01-15

    Applicant: 暨南大学

    Abstract: 本发明公开了一种基于四极杆质谱的锂离子电池电解液泄漏检测系统及方法,该系统包括:真空室、真空控制系统、质谱检测系统;真空室用于放置待测锂离子电池;真空控制系统用于控制真空室的抽空,并利用真空室与质谱检测系统之间的压差,将待测锂离子电池挥发出的电解液溶剂推进入到质谱检测系统;质谱检测系统采用四极杆质谱,四极杆质谱采用封闭式EI源,进入四极杆质谱的电解液溶剂气体在电离室处被直接电离,经由四极杆的筛选进入检测器,完成检测。本发明通过气压控制为锂离子电池电解液挥发提供条件,简单高效,利用四极杆质谱的高灵敏检测能力,高效检测锂离子电池的微小泄漏。

    一种应用于飞行时间质量分析器的离子衰减装置及方法

    公开(公告)号:CN116525402A

    公开(公告)日:2023-08-01

    申请号:CN202310567770.3

    申请日:2023-05-19

    Applicant: 暨南大学

    Abstract: 本发明公开一种应用于飞行时间质量分析器的离子衰减装置及方法,检测仪器技术领域,装置包括:离子衰减装置设置于飞行时间质量分析器的加速区,离子衰减装置具体包括:第一层栅网、第二层栅网和第三层栅网;第一层栅网、第二层栅网和第三层栅网依次放置;第一层栅网、第二层栅网和第三层栅网均包括多根栅网径丝;第一层栅网的全部的栅网径丝、第三层栅网的全部的栅网径丝和第二层栅网的中间区域的栅网径丝采用第一电压供电;第二层栅网的两侧区域的栅网径丝采用第二电压供电;通过控制采用第二电压供电的第二层栅网的两侧区域的栅网径丝的数量进行衰减率的控制,本发明实现了飞行时间质谱中对离子衰减率的控制。

    一种气溶胶颗粒电离方法、电离系统及质谱分析装置

    公开(公告)号:CN114112818B

    公开(公告)日:2023-05-16

    申请号:CN202111473539.5

    申请日:2021-11-29

    Applicant: 暨南大学

    Abstract: 本发明提供一种气溶胶颗粒电离方法、电离系统及质谱分析装置,气溶胶颗粒电离方法包括:确定多段粒径范围;初始化每段粒径范围的计数为0;开始计时,并对空气中的气溶胶颗粒进行采样,得到颗粒信号;在每个单位采样周期内,根据颗粒信号确定对应气溶胶颗粒的粒径及粒径所属的粒径范围;判断粒径范围的计数是否为1;若粒径范围的计数为1,则继续对空气中的气溶胶颗粒进行采样;若粒径范围的计数为0,则产生电离信号,对气溶胶颗粒进行电离,并将对应的粒径范围的计数置1,继续对空气中的气溶胶颗粒进行采样。通过限定对某一段粒径范围的颗粒打击一次后,不再进行此粒径段的再次打击,提高了对大颗粒和小颗粒的打击概率。

    一种用于提升质谱仪器分辨率的数值分析方法及装置

    公开(公告)号:CN111027228B

    公开(公告)日:2023-03-21

    申请号:CN201911366492.5

    申请日:2019-12-26

    Applicant: 暨南大学

    Abstract: 本发明公开了用于用于提升质谱仪器分辨率的数值分析方法,包括如下步骤:根据预定义的多个电极初始电压值进行离子模拟运动,生成第一分辨率集合;根据第一搜索条件对第一分辨率集合中的极大值变化进行判断,若第一分辨率集合中的极大值发生变化,否则生成第一优解集合,并执行下述;根据第一优解集合对应的多个电极的电压值进行离子模拟运动,生成第二分辨率集合;根据第二搜索条件对第二分辨率集合中的极大值是否变化进行判断,否则生成第二优解集合,其中,所述第二搜索条件的搜索步长小于所述第一搜索条件。能够通过先全局粗查后局部细搜的搜索方式,相比单次搜索其结果更优更准确,对比全局细搜能免去大量不必要的计算,节省时间。

Patent Agency Ranking