非法集资的识别方法和装置、存储介质、电子装置

    公开(公告)号:CN111709841A

    公开(公告)日:2020-09-25

    申请号:CN202010357155.6

    申请日:2020-04-29

    Abstract: 本申请公开了一种非法集资的识别方法和装置、存储介质、电子装置。其中,该方法包括:获取第一对象的第一信息,第一信息包括第一对象在多个维度的特征信息,第一对象为存在虚拟资源的收集行为的对象;将第一信息转换为第一向量,第一向量包括多个子向量,多个子向量中的每个子向量用于表示第一信息中的一个维度的特征信息,多个子向量中任意两个子向量表示的特征信息的维度不同;将第一向量输入第一模型,并通过第一模型识别出第一对象的虚拟资源的收集行为是否为非法集资行为,其中,第一模型是使用第二信息进行训练得到的。本申请解决了检测非法集资行为的识别效率较低的技术问题。

    一种面向网络数据的专题文档快速识别系统

    公开(公告)号:CN105843854B

    公开(公告)日:2019-02-05

    申请号:CN201610150817.6

    申请日:2016-03-16

    Abstract: 本发明提供一种面向网络数据的专题文档快速识别系统,通过与不同规则的高效匹配达到快速识别专题的目的。本发明主要由文档获取模块、文档结果存储模块、轮询监测模块、实时服务接口、历史服务接口、规则树构建模块、实时过滤处理模块和回溯过滤处理模块组成。本发明实现了对实时数据和历史有效数据同时进行处理的功能,能够对大量文档数据进行批量处理,能够在保证系统正常运行的前提下对处理算法进行动态热切换,能够在输入输出接口内容变动后依然可以保证系统的正常运行,弥补了目前一些文档识别系统无法随意更改、灵活性和复用性差等的缺陷,对需求变更有很强的适应性。

    一种远程监督的Dual-Attention关系分类方法及系统

    公开(公告)号:CN108829722A

    公开(公告)日:2018-11-16

    申请号:CN201810432079.3

    申请日:2018-05-08

    Abstract: 本发明涉及一种远程监督的Dual-Attention关系分类方法及系统,包括:通过远程监督将知识库中的实体对对齐到新闻语料,构建实体对句子集合;基于词级别注意力机制的Bi-LSTM模型将所述句子进行词级别的向量编码,得到所述句子的语义特征编码向量;基于句子级别注意力机制的Bi-LSTM模型将所述句子的语义特征进行编码与去噪,得到句子集特征编码向量;将所述句子集特征编码向量与实体对翻译向量进行打包,对得到的包特征进行实体对的关系分类。本发明提供的技术方案降低了模型训练的噪声数据,避免人工标注数据及其造成的错误传递。运用开放域文本与大规模知识库进行实体对齐,有效解决了关系抽取的标注数据规模问题。

    一种基于自动机的实体关系快速抽取方法

    公开(公告)号:CN105824801B

    公开(公告)日:2018-06-15

    申请号:CN201610150794.9

    申请日:2016-03-16

    Abstract: 本发明提供一种基于自动机的实体关系快速抽取方法,包括以下步骤:步骤1,定制规则文件;步骤2,对规则文件中的各个规则进行文法检查,检测规则文件中的各个规则是否满足文法要求,如果满足,则执行步骤3;步骤3,对通过文法检查的所述规则文件中的各个规则进行语义解释;步骤4,将语义解释后的所述规则文件中的各个规则进行解析编译,完成规则向层叠有限状态自动机的转换,得到有限状态自动机;步骤5,使用所述有限状态自动机,对输入的文本数据进行实体属性以及实体关系的抽取,得到最终的实体属性以及实体关系。优点为:能够保证对开放域文本进行快速的实体关系与实体属性抽取。同时,对于特定领域的实体关系可以定制化的进行抽取。

    一种事理知识图谱构建方法及系统

    公开(公告)号:CN108052576A

    公开(公告)日:2018-05-18

    申请号:CN201711293661.8

    申请日:2017-12-08

    Abstract: 本发明涉及一种事理知识图谱构建方法及系统,该构建系统包括:宏观事件层构建模块、微观知识层构建模块、关系映射模块、本体层构建模块和事理知识图谱生成模块;所述宏观事件层构建模块包括:事件实体抽取单元、事件演化单元和因果关系抽取单元;所述微观知识层构建模块包括:微观实体抽取单元。本发明通过从结构化数据中获取事件实体和微观实体,分别构建宏观事件层和微观实体层,并抽取不同事件实体之间的因果关系映射到微观实体中,通过对微观实体层中微观实体的关系、类型和因果关系进行抽象和归纳,由此判断事件形成突发性群体响应的本质原因,对突发事件进行预警预测。

    一种流式数据主题挖掘方法及其系统

    公开(公告)号:CN107992474A

    公开(公告)日:2018-05-04

    申请号:CN201711193285.5

    申请日:2017-11-24

    Abstract: 本发明涉及一种流式数据主题挖掘方法及其系统,该挖掘方法包括:对结构化数据进行筛选,得到主题数据,提取主题数据的主题实体和主题关键词,分别生成主题实体集合和主题关键词集合;提取候选新闻数据的新闻实体和新闻关键词,分别生成新闻实体集合和新闻关键词集合;分别计算得到实体相关度、关键词相关度和核心词相关度;计算候选新闻数据与主题数据的新闻主题相似度,并将新闻主题相似度大于预设阈值的候选新闻数据导入合格新闻数据集合。本发明能够从海量的实时流式数据中准确找到用户关注的特定主题的相关新闻,保证了该主题下新闻的实时性、准确性,以及该主题下新闻动态的变化过程,并对新闻内容进行了分析。

Patent Agency Ranking