一种模型部署方法、装置、存储介质及电子设备

    公开(公告)号:CN117075918A

    公开(公告)日:2023-11-17

    申请号:CN202311328294.6

    申请日:2023-10-13

    Abstract: 在一种模型部署方法、装置、存储介质及电子设备中,响应于待优化模型,生成计算逻辑单元以及对应的张量程序,并确定各所述计算逻辑单元对应的类型。然后,依次确定各计算逻辑单元之后计算逻辑单元为约束单元,根据该计算逻辑单元的张量程序以及约束单元的张量程序,确定数据排布优化转换方案。最后,将该计算逻辑单元的张量程序、约束单元的张量程序以及转换方案组合,得到候选策略,根据耗时从各候选策略中选择目标策略并根据目标策略并进行模型部署。通过获取全局最优部署策略,解决了优化后各层中间表示最优结果存在冲突的情况,提高了模型部署效率。

    一种基于联邦多任务学习的模型训练方法、装置及设备

    公开(公告)号:CN117057442A

    公开(公告)日:2023-11-14

    申请号:CN202311298511.1

    申请日:2023-10-09

    Abstract: 本说明书公开了一种基于联邦多任务学习的模型训练方法、装置及设备,中心服务器将各客户端对应的初始模型参数发送给各客户端,以使各客户端对基于各自的初始模型参数得到的模型进行训练,并将训练后的模型的优化模型参数返回给中心服务器,中心服务器根据各客户端对应的优化模型参数,确定各客户端对应的对优化模型参数进行加权的权重,并根据各客户端对应的对各优化模型参数进行加权的权重,确定适用于各客户端的模型参数,得到适用于各客户端的模型。由于各客户端的数据分布存在差异,因此本方法在模型的每次迭代训练过程中,根据权重确定各客户端的模型参数,使得各客户端得到更加泛化的模型的同时,可得到适用于各自数据分布的个性化模型。

    一种元数据存储方法、装置、计算机设备和存储介质

    公开(公告)号:CN116521094B

    公开(公告)日:2023-11-14

    申请号:CN202310804460.9

    申请日:2023-07-03

    Abstract: 本申请涉及一种元数据存储方法、装置、计算机设备和存储介质。所述方法包括:根据应用需求设置元数据的存储基准时间;以存储基准时间为起点,根据待存储的元数据的数据类型以及待存储的元数据的存储周期,设置存储空间中的存储时间片;根据接收到的待存储的元数据的时间戳,将待存储的元数据存储至对应的存储时间片中。采用本方法能够解决现有的存储方式存在数据删除不彻底而导致的存储空间的利用率低以及存储空间回收率低的问题。

    通用矩阵乘计算优化方法、装置及处理器

    公开(公告)号:CN116881618A

    公开(公告)日:2023-10-13

    申请号:CN202311078065.3

    申请日:2023-08-25

    Abstract: 本申请涉及一种通用矩阵乘计算优化方法、装置及处理器,该方法应用于处理器,处理器包括至少一个计算核心,计算核心包括算术逻辑单元、数据缓存和寄存器,包括:基于算术逻辑单元的宽度、寄存器的数量、数据缓存的容量,以及预先确定的用于构成通用矩阵乘算子内核的计算核心数量,确定通用矩阵乘算子内核的尺寸;基于算子内核的尺寸、预先确定的基本块矩阵的尺寸,以及左矩阵、右矩阵的尺寸,优化并行计算的计算核心数量;基于并行计算的计算核心数量、基本块矩阵的尺寸,以及左矩阵、右矩阵的尺寸,对数据缓存中通用矩阵乘计算区域的分块计算进行优化,解决了通用矩阵乘计算硬件资源利用率较低,数据访存开销较大的问题。

    面向深度学习的分布式计算系统的作业调度方法和装置

    公开(公告)号:CN116755893A

    公开(公告)日:2023-09-15

    申请号:CN202311056655.6

    申请日:2023-08-22

    Abstract: 面向深度学习的分布式计算系统的作业调度方法和装置,包括:获取用户输入的作业信息,并存储在数据库中,作业信息包括作业优先级等,并根据作业信息维护一个作业优先级队列;获取集群中各节点的缓存信息;响应于接收到发起作业执行的请求,作业执行根据所述的优先级队列先后顺序执行,将所述作业调度到相应主机节点上执行,执行的结果存储到数据库中;响应于接收到模型更新作业的请求,在所述数据库中查询所述作业所需的数据,计算作业剩余结束时间,并将计算结果保存到数据库中;响应与接收到更新所述队列请求,在所述数据库中查询所需的数据,并根据所述数据更新所述队列。本发明较少依赖用户输入信息,有效提高作业执行时间预测精度。

    一种算子优化调度模型的训练方法、装置、介质及设备

    公开(公告)号:CN116755862A

    公开(公告)日:2023-09-15

    申请号:CN202311010092.7

    申请日:2023-08-11

    Abstract: 本说明书公开了一种算子优化调度模型的训练方法、装置、介质及设备,包括:确定当前时刻作为训练样本的预先基于图像数据训练的图像分类模型中的各算子的信息,并输入待训练的算子优化调度模型,确定当前时刻待优化算子。确定对待优化算子进行优化后的待优化算子对图像数据进行图像分类时的运行下降时间。再根据信息、待优化算子以及待优化算子对图像数据进行图像分类时的运行下降时间,对待训练的算子优化调度模型进行训练,使得可以通过训练完成的算子优化调度模型确定当前时刻所需调度进行优化的算子,减少人工设计选择所需优化的算子的策略的麻烦,加快后续将待部署的图像分类模型部署到硬件上的速度。

    一种面向智能计算的分布式模型训练容器调度方法及装置

    公开(公告)号:CN116167463B

    公开(公告)日:2023-07-07

    申请号:CN202310461389.9

    申请日:2023-04-26

    Abstract: 本说明书公开了一种面向智能计算的分布式模型训练容器调度方法及装置,将目标模型进行拆分,以得到各子模型,根据各个子模型,确定用于部署各个子模型的各计算节点,并在各计算节点上创建各容器,以将各子模型分别部署到所述各容器内。采用样本数据执行模型训练任务,以训练各容器内的部署的子模型。根据各计算节点的负载数据以及各容器对应的运算时长,确定出需要调整容器分布的计算节点,作为目标节点。以部署有子模型的各计算节点中的容器所对应的运算时长相接近为调整目标,对目标节点中各容器的分布进行调整;基于调整容器分布后的各计算节点,执行目标模型的训练任务。

    一种面向分布式集群的任务执行方法、装置、介质及设备

    公开(公告)号:CN116382599A

    公开(公告)日:2023-07-04

    申请号:CN202310669715.5

    申请日:2023-06-07

    Abstract: 本说明书公开了一种面向分布式集群的任务执行方法、装置、介质及设备。所述面向分布式集群的任务执行方法包括:获取样本数据,根据磁盘带宽和本地延迟,以及网络带宽和网络延迟,对样本数据的数量进行划分,将第一样本数量的样本数据存储在各计算节点的本地磁盘,将第二样本数量的样本数据存储在存储节点,针对每个计算节点,将该计算节点的本地磁盘中指定数量的样本数据与其他计算节点的本地磁盘中的样本数据进行交换,得到更新后样本数据,以及,从所述存储节点中读取远端样本数据,根据更新后本地样本数据和远端样本数据,在该计算节点上执行当前训练周期针对目标模型的训练任务。

Patent Agency Ranking