一种荧光采集装置及核酸检测装置

    公开(公告)号:CN112147115A

    公开(公告)日:2020-12-29

    申请号:CN202010899542.2

    申请日:2020-08-31

    Abstract: 本发明提出一种荧光采集装置及核酸检测装置,包括光源部件、第一反射元件、第二反射元件和第三反射元件,所述第二反射元件和第三反射元件分布在光源部件的第一侧和第二侧,且至少分别接收光源部件在所述第一侧和第二侧处的边界光;第一反射面用于分别接收第二反射元件反射出的第二光源和第三反射元件反射出的第三光源,对应地第一反射面分别反射出第二反射光和第三反射光,并分别照射在孔板上的区域所在的第二面积和第三面积,分别重叠于所述第一面积的两侧的边缘区域。通过增加孔板的边缘区域的光通量,使得光源部件发射出的点光源在孔板的中心区域与边缘区域的光照强度差异大大减少,实现大面积的孔板均匀照明的改善,使得检测结果更准确。

    涂覆有锚定物质的零模波导孔的制备方法及波导孔结构

    公开(公告)号:CN111123429A

    公开(公告)日:2020-05-08

    申请号:CN201911350416.5

    申请日:2019-12-24

    Abstract: 本发明提供一种涂覆有锚定物质的零模波导孔的制备方法,该方法通过调节高折射率非反射层的沉积厚度可以缩小零模波导孔的孔内体积,显著减少孔内的游离核苷酸,提高信噪比;通过在孔内部沉积高折射率非反射层材料可以使被激发荧光的位置远离零模波导孔的金属壁,使荧光不会减弱甚至淬灭,荧光效果增强的同时也使得检测更加灵敏;选取设定的高折射率非反射层材料以及沉积厚度(即控制孔内样本与非反射壁的折射率)可以在增强荧光与保证酶活性之间获得最佳平衡;通过使用掩模版和正胶的光刻可以使每个零模波导孔中心底部精确的连接DNA聚合酶,提升孔的利用率。本发明还涉及一种涂覆有锚定物质的零模波导孔结构。

    纳米孔基因测序微电流检测装置及电流稳定的补偿方法

    公开(公告)号:CN111090002A

    公开(公告)日:2020-05-01

    申请号:CN201911350418.4

    申请日:2019-12-24

    Abstract: 本发明提供纳米孔基因测序微电流检测装置,该装置包括对DNA分子流经薄膜上的纳米孔道时发生的电流变化的检测电路,检测电路包括第一电极、第二电极、第三电极和恒电位电路;当工作电极发生偏移时,恒电位电路使对电极对地电位始终跟随参比电极对地电位变化,以使得所述第一电极与第二电极之间保持稳定的电压差。本发明还涉及一种用于纳米孔基因测序微电流稳定的补偿方法。本发明将工作电极检测到的电流信号通过积分放大器变化为电压信号,积分放大器以电容为反馈元件,并且采用两个采样保持电路实现了相关双取样,具有更低的噪声表现且提高了信号的带宽和线性度,同时对电流信号也进行滤波、去噪、补偿等处理,极大地提高了电流检测的准确率。

    超高通量单细胞核酸分子实时荧光定量分析芯片

    公开(公告)号:CN110628567A

    公开(公告)日:2019-12-31

    申请号:CN201910912693.4

    申请日:2019-09-25

    Abstract: 本发明公开了一种超高通量单细胞核酸分子实时荧光定量分析芯片,包括微孔阵列芯片和微流控封装结构,所述微孔阵列芯片设置在所述微流控封装结构内;所述微孔阵列芯片在其基底上设置有至少一个微孔阵列区,所述微孔阵列区具有多个微孔,所述微孔具有在一个微孔中只能容纳单个细胞的尺寸和形状,且所述微孔内壁上修饰有至少一个DNA探针。本发明通过设计具有十万量级、百万量级微孔的芯片,并通过在微孔内修饰DNA探针捕获细胞内的目标核酸分子,可实现十万量级、百万量级的单细胞捕获,并进一步实现原位裂解、核酸扩增,能为超高通量单细胞核酸分子实时荧光定量分析提高芯片基础。

    多孔膜层的制备方法、电化学传感器及其制备方法

    公开(公告)号:CN110044982A

    公开(公告)日:2019-07-23

    申请号:CN201910287083.X

    申请日:2019-04-10

    Abstract: 本发明公开了一种多孔膜层的制备方法,包括将前驱体溶液置于密闭的反应腔室中,使其凝胶化,得到多孔凝胶的步骤。上述的制备方法通过在密闭的反应腔室中使溶胶溶液发生凝胶化,能够避免凝胶的孔隙塌陷,得到孔隙均匀、孔隙率高的多孔膜层。本发明公开了一种电化学传感器,包括第一电极阵列和第二电极阵列,第一电极阵列和第二电极阵列共用第一参比电极,第一参比电极和酶电极的外侧面包覆疏水多孔膜。电化学传感器的集成度高、两个电极阵列共用第一参比电极,能够设置于同一检测通道内,简化了传感器的电极结构。本发明公开了上述电化学传感器的制备方法,制备工序简化、制备效率高。

    电化学检测芯片、电化学传感器及其制备方法和应用

    公开(公告)号:CN109507260A

    公开(公告)日:2019-03-22

    申请号:CN201811652894.7

    申请日:2018-12-29

    Abstract: 本发明公开了一种电化学检测芯片,包括电极层,所述电极层的工作电极包括依次层叠设置的导电层、纳米材料层和凝血反应层;所述凝血反应层产生用于检测凝血酶原时间的电信号,所述纳米材料层传递和放大所述电信号。利用纳米材料层的高导电性、大比表面积以及良好的生物相容性等,实现对凝血酶原时间检测过程中电信号的放大、增强,以提高芯片检测的灵敏度、缩短检测时间。本发明公开了一种电化学传感器,包括上述的电化学检测芯片,能够实现对凝血酶原时间的快速、灵敏检测,且具有较高的检测稳定性和重复性。本发明公开了一种电化学传感器的制备方法,适于制得上述灵敏度高、检测结果准确的电化学传感器。

    基于声光联用的分子动力学检测方法

    公开(公告)号:CN105300938A

    公开(公告)日:2016-02-03

    申请号:CN201510599139.7

    申请日:2015-09-18

    Abstract: 本案涉及基于声光联用的分子动力学检测方法,它通过结合有磁珠的第一抗体和结合有光学标记分子的第二抗体去捕获待测生物分子并形成夹心结构,并在磁场作用下快速将磁珠连同该夹心结构吸附至含光学标记分子吸附体的声波压电传感器表面,通过传感器信号的变化来获得分子动力学信息,同时借助光学标记分子可展开精确的光学检测,并以此获得的结果对动力学参数进行校正。本案无需对样品前处理即可直接进行检测,能够快速从复杂样本中捕获超微量的生物待测分子;实现了对生物分子的动态过程测试,获取了待测分子质量、粘弹性、浓度等信息,并结合反应动态曲线测算反应速率、结合常数或解离常数等动力学参数。

Patent Agency Ranking