-
公开(公告)号:CN114262229A
公开(公告)日:2022-04-01
申请号:CN202210003862.4
申请日:2022-01-04
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/56 , C04B35/622 , C04B35/64
Abstract: 一种高强韧二硼化物‑碳化物复相高熵陶瓷的制备方法和应用,它属于陶瓷材料技术领域,具体涉及一种高强韧的二硼化物‑碳化物复相高熵陶瓷材料的制备方法和应用。本发明的目的是要解决现有单相高熵陶瓷材料烧结困难,致密度低和断裂韧性差,限制了其应用的问题。方法:制备二硼化物粉体和碳化钛的混合粉末;二、热压烧结。一种高强韧二硼化物‑碳化物复相高熵陶瓷在核反应堆和超高温领域中应用。本发明制备的复相陶瓷的致密度均大于97%,强度和韧性均得到显著提升,室温下陶瓷的硬度为35~40GPa,三点弯曲强度为800~1100MPa,断裂韧性为6~8MPa·m1/2。本发明可获得一种高强韧二硼化物‑碳化物复相高熵陶瓷。
-
公开(公告)号:CN110194667B
公开(公告)日:2021-09-17
申请号:CN201910553317.0
申请日:2019-06-24
Applicant: 哈尔滨工业大学
IPC: C04B35/56 , C04B35/622
Abstract: 一种超硬五组元过渡金属碳化物单相高熵陶瓷材料的制备方法,本发明属于超硬陶瓷材料技术领域,具体涉及一种超硬单相高熵陶瓷材料的制备方法。本发明的目的是要解决现有多组元碳化物的制备方法难以避开氧污染和致密度较难提高的问题。一种超硬五组元过渡金属碳化物单相高熵陶瓷材料的化学式为(Tix1Zrx2Nbx3Tax4Mx5)C。方法:一、称料;二、混合;三、煅烧;四、高温烧结;五、脱模。本发明提高了碳化物的致密度和力学性能,显著的固溶强化作用和高致密度使材料的硬度明显提升。本发明可获得一种超硬五组元过渡金属碳化物单相高熵陶瓷材料。
-
公开(公告)号:CN107721433B
公开(公告)日:2021-03-12
申请号:CN201710910995.9
申请日:2015-10-21
Applicant: 哈尔滨工业大学
IPC: C04B35/583 , C04B35/64
Abstract: 本发明涉及氮化硼复相陶瓷及其烧结方法和应用。所述方法包括:一、制备复合烧结助剂粉末;二、制备复合粉末;三、将复合粉末在真空或惰性气氛条件下,升温,加压,再降温,即得氮化硼复相陶瓷;本发明还涉及所述方法制得的氮化硼复相陶瓷作为侧封板材料的应用。本发明所述方法制得的氮化硼复相陶瓷的致密度可达到95%以上,材料晶粒细小,并具有优异的综合力学性能。
-
公开(公告)号:CN107573079B
公开(公告)日:2020-08-04
申请号:CN201710909139.1
申请日:2015-10-21
Applicant: 哈尔滨工业大学
IPC: C04B35/583 , C04B35/622
Abstract: 本发明涉及薄带连铸用氮化硼基陶瓷侧封板材料及其制备方法和应用。所述材料由氮化硼、电熔氧化锆、碳化硅和添加剂制成。所述方法包括:一、称取原料;二、将制备复合粉末;三、制备氮化硼复合粉末;四、氮化硼基陶瓷侧封板材料预制坯体的制备;五、薄带连铸用氮化硼基陶瓷侧封板材料的制备。本发明还涉及所述材料作为薄带连铸用氮化硼基陶瓷侧封板材料的应用。本发明解决了氮化硼基复相陶材料烧结温度高和低熔点烧结助剂导致服役性能下降的技术问题,所制备的薄带连铸用氮化硼基陶瓷侧封板材料的致密度可达到97%以上,具有优异的综合力学性能,其抗弯强度值可达到420MPa,非常适合于制备薄带连铸用氮化硼基陶瓷侧封板。
-
公开(公告)号:CN109977948A
公开(公告)日:2019-07-05
申请号:CN201910212757.X
申请日:2019-03-20
Applicant: 哈尔滨工业大学
Abstract: 本发明提出了一种基于卷积神经网络的搅拌摩擦焊缝缺陷识别方法,属于搅拌摩擦焊缝缺陷识别处理技术领域。所述方法包括:步骤一、原始数据处理;步骤二、添加缺陷标签;步骤三、构建卷积神经网络;步骤四、训练卷积神经网络。所述搅拌摩擦焊缝缺陷识别方法具有经济、快速、准确、鲁棒性高等特点,显著提高搅拌摩擦焊缝缺陷识别效率等特点。
-
公开(公告)号:CN105198444B
公开(公告)日:2018-06-26
申请号:CN201510689600.8
申请日:2015-10-21
Applicant: 哈尔滨工业大学
IPC: C04B35/583 , C04B35/622
Abstract: 薄带连铸用氮化硼基陶瓷侧封板材料的制备方法,它涉及一种封板材料及其制备方法。本发明是为了解决氮化硼基复相陶瓷侧封材料烧结温度高和低熔点烧结助剂导致侧封材料服役性能下降的技术问题。材料由氮化硼、电熔氧化锆、碳化硅和添加剂制成。方法:一、称取原料;二、将制备复合粉末;三、制备氮化硼复合粉末;四、氮化硼基陶瓷侧封板材料预制坯体的制备;五、薄带连铸用氮化硼基陶瓷侧封板材料的制备。本发明所制备的薄带连铸用氮化硼基陶瓷侧封板材料的致密度可达到97%以上,具有优异的综合力学性能,其抗弯强度值可达到420MPa。本发明属于陶瓷侧封板材料的制备领域。
-
公开(公告)号:CN105198450B
公开(公告)日:2017-09-12
申请号:CN201510689625.8
申请日:2015-10-21
Applicant: 哈尔滨工业大学
IPC: C04B35/645 , C04B35/583
Abstract: 氮化硼复相陶瓷侧封板低温热压烧结方法,它涉及一种氮化硼复相陶瓷侧封板烧结方法。本发明为了解决现有氮化硼复相陶瓷制备中烧结温度高和低熔点烧结助剂过分残留,导致力学性能降低的问题。本方法如下:一、制备的复合烧结助剂粉末;二、制备氮化硼复合粉末;三、将氮化硼复合粉末装入热压模具中,采用三个阶段进行烧结,即得氮化硼复相陶瓷侧封板;本发明在1300℃~1400℃热压烧结制备的氮化硼复相陶瓷侧封板的致密度可达到96%以上,氮化硼复相陶瓷材料晶粒细小并具有优异的综合力学性能,其抗弯强度值可达到300MPa。本发明属于复相陶瓷侧封板的制备领域。
-
公开(公告)号:CN105218105A
公开(公告)日:2016-01-06
申请号:CN201510689631.3
申请日:2015-10-21
Applicant: 哈尔滨工业大学
IPC: C04B35/583 , C04B35/622 , C04B35/66
Abstract: 薄带连铸用氮化硼复相陶瓷侧封板及其制备方法,它涉及一种陶瓷侧封板及其制备方法。本发明为了解决低熔点相的残留影响氮化硼复相陶瓷侧封板的高温服役性能的技术问题。薄带连铸用氮化硼复相陶瓷侧封板由氮化硼、电熔氧化锆、碳化硅、含硼化合物和碱土金属氧化物组成;方法:一、称取原料;二、分散,干燥,过筛,得到混合均匀的复合粉末;三、将复合粉末放入模具中,进行两段式热压烧结,即得。所制备的薄带连铸用氮化硼复相陶瓷侧封板的致密度可达到97%以上,其抗弯强度值可达到250~350MPa,高温力学性能测试中没有出现明显的软化现象。在800℃温差下反复进行十余次热震试验,没有发现热震断裂现象。本发明属于陶瓷侧封板的制备领域。
-
公开(公告)号:CN105198450A
公开(公告)日:2015-12-30
申请号:CN201510689625.8
申请日:2015-10-21
Applicant: 哈尔滨工业大学
IPC: C04B35/645 , C04B35/583
Abstract: 氮化硼复相陶瓷侧封板低温热压烧结方法,它涉及一种氮化硼复相陶瓷侧封板烧结方法。本发明为了解决现有氮化硼复相陶瓷制备中烧结温度高和低熔点烧结助剂过分残留,导致力学性能降低的问题。本方法如下:一、制备的复合烧结助剂粉末;二、制备氮化硼复合粉末;三、将氮化硼复合粉末装入热压模具中,采用三个阶段进行烧结,即得氮化硼复相陶瓷侧封板;本发明在1300℃~1400℃热压烧结制备的氮化硼复相陶瓷侧封板的致密度可达到96%以上,氮化硼复相陶瓷材料晶粒细小并具有优异的综合力学性能,其抗弯强度值可达到300MPa。本发明属于复相陶瓷侧封板的制备领域。
-
公开(公告)号:CN105198442A
公开(公告)日:2015-12-30
申请号:CN201510689598.4
申请日:2015-10-21
Applicant: 哈尔滨工业大学
IPC: C04B35/583 , C04B35/622
Abstract: 双辊薄带连铸用氮化硼基侧封板及其制备方法,它涉及一种氮化硼基侧封板及其制备方法。本发明是为了解决添加低熔点烧结助剂由于低熔点相残留导致侧封材料服役性能下降的矛盾的技术问题。双辊薄带连铸用氮化硼基侧封板按照重量份数由氮化硼、电熔氧化锆、碳化硅、硼酸盐和氧化铝制成,方法:一、称取原料;二、制备复合粉末;三、将复合粉末装入热压模具中,热压,即得双辊薄带连铸用氮化硼基侧封板。本发明所制备的双辊薄带连铸用氮化硼基侧封板的晶粒细小,分布均匀,致密度可达到95.0%~99.5%,具有优异的抗热震性能、抗钢水侵蚀性能、耐高温摩擦磨损以及良好的热机械性能和热稳定性能。本发明属于侧封板的制备领域。
-
-
-
-
-
-
-
-
-