-
公开(公告)号:CN111090941A
公开(公告)日:2020-05-01
申请号:CN201911305096.1
申请日:2019-12-17
Applicant: 哈尔滨工业大学
Abstract: 一种基于多目标优化算法的航天器最优Lambert轨道交会方法,属于航天器轨道交会技术领域。本发明为了解决现有的航天器最优Lambert轨道交会方法存在燃料消耗与时间消耗不能同时达到最优的的问题。本发明根据航天器确定脉冲推力Lambert交会对应的Lambert问题的拉格朗日表示形式,并计算异面Lambert交会的转移轨道参数,得到Lambert交会的燃料消耗和交会时间的性能指标;经过优化算法寻优获得燃料消耗与交会时间综合最优的运动轨迹。主要用于航天器最优Lambert轨道交会设计及控制。
-
公开(公告)号:CN111027206A
公开(公告)日:2020-04-17
申请号:CN201911235470.5
申请日:2019-12-05
Applicant: 哈尔滨工业大学
IPC: G06F30/20
Abstract: 具有规定性能的拦截机动目标自适应滑模控制方法,涉及制导技术领域,针对现有技术在具有视线角约束的制导律设计中,常规的制导律只能限制制导终端视线角收敛到给定的角度,进而使得制导系统的视线角在整个制导过程中不能够满足收敛速度要求和稳态误差要求的问题,本发明保证了制导系统的视线角能按规定的性能约束函数进行收敛,在导弹拦截隐身目标或者多导弹协同制导等场景中,制导系统的视线角应满足特定的约束,本发明可以利用设计的性能约束函数对制导系统的视线角收敛时间,稳态误差和超调量进行限制。可以更好的改善制导系统的性能,并且实施方式简单,能容易的应用到其他非线性系统的控制问题中。
-
公开(公告)号:CN106707751B
公开(公告)日:2019-05-17
申请号:CN201611187013.X
申请日:2016-12-20
Applicant: 哈尔滨工业大学
IPC: G05B13/04
Abstract: 航天器终端接近的有限时间饱和避碰控制方法,涉及一种航天器终端的控制方法,具体涉及一种考虑了避碰控制的控制方法。本发明为了解决目前的控制系统还没有一种能够基于有限时间实现有效避碰的控制方法。本发明首先以目标航天器轨道坐标系为参考坐标系,根据目标航天器和追踪航天器的相对运动模型构建追踪航天器相对于目标航天器的轨道运动方程,然后根据避碰模型和控制目标设计基于有限时间饱和设计避碰控制器,设计避碰控制器分别针对外部扰动上界已知的情况和外部扰动上界未知的情况分别设计避碰控制器。本发明适用于航天器终端的避碰控制。
-
公开(公告)号:CN106767837A
公开(公告)日:2017-05-31
申请号:CN201710101561.4
申请日:2017-02-23
Applicant: 哈尔滨工业大学
Abstract: 基于容积四元数估计的航天器姿态估计方法,本发明涉及基于容积四元数估计以及星敏感器与陀螺组合的航天器姿态估计方法。本发明为了解决现有技术存在乘性噪声及噪声相关问题,导致航天器姿态估计精度低的问题。本发明包括:步骤一:建立航天器姿态运动学模型和观测模型;步骤二:采用高斯滤波算法去除步骤一建立的航天器姿态运动学模型和观测模型中的噪声;步骤三:采用容积四元数姿态估计器对航天器姿态进行估计。本发明所提出的CQE‑MCNS算法相比CQE算法,角度估计误差减小0.0002°左右,陀螺漂移估计误差减小0.002°/h左右,因此更适用于具有乘性噪声及噪声相关的航天器姿态估计问题。本发明用于航天领域。
-
公开(公告)号:CN106406102A
公开(公告)日:2017-02-15
申请号:CN201611187012.5
申请日:2016-12-20
Applicant: 哈尔滨工业大学
IPC: G05B13/04
CPC classification number: G05B13/042
Abstract: 一种含干扰观测器的高超声速飞行器跟踪控制方法,本发明涉及含干扰观测器的高超声速飞行器跟踪控制方法。本发明为了解决现有技术没有证明观测器在观测系统干扰过程中是有界的问题。本发明步骤为:步骤一:根据高超声速飞行器纵向输入输出线性化模型,建立带有系统干扰的二阶系统模型;步骤二:根据步骤一建立的带有系统干扰的二阶系统模型,基于滑模控制理论,设计有限时间终端滑模控制器;步骤三:对步骤二设计的有限时间终端滑模控制器进行系统稳定性证明。本发明方法使得系统滑模面是有限时间稳定的,系统状态是渐近收敛的。本发明应用于高超声速飞行器控制领域。
-
-
-
-