大规模肝脏电子病历病变分类的属性并行约简Spark方法

    公开(公告)号:CN111816270A

    公开(公告)日:2020-10-23

    申请号:CN202010558462.0

    申请日:2020-06-18

    Applicant: 南通大学

    Abstract: 本发明提供了大规模肝脏电子病历病变分类的属性并行约简Spark方法,包括如下步骤:S10读取肝脏电子病历的数据集合并划分成多个肝脏病历数据子集发送到相应从节点上;S20对所述肝脏病历数据子集进行不一致处理,约简肝脏病历数据中不一致的数据,然后计算肝脏病历数据属性的等价类划分值;S30根据肝脏病历数据子集中数据对象计算属性重要度;S40计算出所述从节点中肝脏病历数据子集的属性重要度集合,进行聚合操作,得到肝脏病历数据的属性重要度集合;S50计算肝脏病历数据集的属性约简集合,并判断其是否满足约简要求。本发明的大规模肝脏电子病历病变分类的属性并行约简Spark方法,有效提高大规模肝脏电子病历属性并行约简的效率和精度。

    一种用于眼底视网膜血管图像分割的粗糙集神经网络方法

    公开(公告)号:CN111815574A

    公开(公告)日:2020-10-23

    申请号:CN202010558465.4

    申请日:2020-06-18

    Applicant: 南通大学

    Abstract: 本发明提供了一种用于眼底视网膜血管图像分割的粗糙集神经网络方法,包括如下步骤:S10图像预处理,获得基于粗糙集增强眼底视网膜血管图像;S20构建U-net神经网络模型;S30利用粒子群优化算法(PSO)对所述U-net神经网络模型进行优化训练,获得PSO-U-net神经网络模型;以及S40将待测彩色眼底视网膜血管图像采用粗糙集理论进行图像增强预处理后使用所述PSO-U-net神经网络模型对所述待测彩色眼底视网膜血管图像分割。本发明的一种用于眼底视网膜血管图像分割的粗糙集神经网络方法,减少了医护人员的工作量,避免了医护人员经验和技能的差别对同一幅眼底图像分割结果存在的差异,有效的进行彩色眼底视网膜血管图像分割,获得更高的分割精度和效率。

    一种用于视网膜病变分类的卷积神经网络权值优化方法

    公开(公告)号:CN110929775A

    公开(公告)日:2020-03-27

    申请号:CN201911127264.2

    申请日:2019-11-18

    Applicant: 南通大学

    Abstract: 本发明涉及到医学信息智能处理领域,具体来说涉及一种用于视网膜病变分类的卷积神经网络权值优化方法。该方法首先获取眼底图像训练集、及其对应的多病变标签;通过单种群蛙跳算法寻找最优初始权值,然后构建卷积神经网络中的卷积层、池化层和全连接层,将最优初始权值作为第一次前向传播计算的参数;将视网膜中四种病变的四个预测值分别与真实值进行交叉熵损失计算并求和得到损失值,判断损失值是否异常,如果异常则围绕前一次前向传播的权值生成蛙群,寻找最优蛙更新网络权值;否则采用梯度下降算法更新网络权值;最后对最终权值进行优化。本发明能有效提高眼底图像多病变检测的准确率,对视网膜疾病和辅助治疗具有较强应用价值。

Patent Agency Ranking