一种流量线性变化的汽轮机配汽规律无扰切换方法

    公开(公告)号:CN103032112B

    公开(公告)日:2014-12-10

    申请号:CN201310015948.X

    申请日:2013-01-16

    Abstract: 一种流量线性变化的汽轮机配汽规律无扰切换方法,它涉及一种无扰切换方法,具体涉及一种流量线性变化的汽轮机配汽规律无扰切换方法。本发明为了解决现有汽轮机配汽规律切换时会引起机组功率较大的扰动的问题。本发明所述由配汽方式F切换到配汽方式G的具体步骤如下:在汽轮机数字电液控制系统中根据配汽方式F和配汽方式G确定各个阀门的切换起始阀位fi(x0)和目标阀位gi(x0);在t1时刻确定阀门入口压力P0,调节级后压力P1,压比根据压比ε、切换时间[t1,t2]在各个阀门非线性流量特性曲线上确定各个阀门的切换规律在汽轮机数字电液控制系统中设计自动切换逻辑,实现汽轮机组的自动无扰切换模式。本发明用于汽轮机配汽方法的切换。

    一种以主蒸汽流量作为调度变量获取汽轮机滑压曲线方法

    公开(公告)号:CN102661176B

    公开(公告)日:2014-08-20

    申请号:CN201210180860.9

    申请日:2012-06-04

    Abstract: 一种以主蒸汽流量作为调度变量获取汽轮机滑压曲线方法,涉及一种确定滑压曲线方法。针对以在不能用一条滑压曲线即可以满足供热抽汽量变化和背压变化运行状况的问题。本发明它的实现步骤为:根据供热抽汽机组的类型,选取M个主蒸汽流量;M为大于2的整数;针对每一个主蒸汽流量分别执行下述步骤:在选取的主蒸汽流量下选择该供热抽汽机组的N个不同的主蒸汽压力值,N为大于4的整数;计算供热抽汽机组的热耗值;根据最小二乘法将所述N个主蒸汽压力值和其相对应的热耗值进行曲线拟合,确定一个最优主蒸汽压力值;然后将得到的M个主蒸汽流量及其对应的最优主蒸汽压力数据进行线性拟合获得最终的滑压运行曲线。用于汽轮机滑压曲线的确定。

    多级会切磁场等离子体推力器用辐射散热装置

    公开(公告)号:CN103790794A

    公开(公告)日:2014-05-14

    申请号:CN201410074568.8

    申请日:2014-03-03

    Abstract: 多级会切磁场等离子体推力器用辐射散热装置,它涉及一种辐射散热装置,以解决多级会切磁场等离子体推力器的阳极温度较高,以及出口处的高温和陶瓷内壁由于粒子的碰撞引起的磁分界面处高温,这些造成推力器通道内壁和阳极受热短时间内急剧增强,这些热量传导严重影响了永磁铁的磁性,以及推力器工作稳定性和可靠性差、使用寿命短的问题,它包括散热圆筒、散热板、两个散热锥筒和两个散热器,推力器壳体布置在两个散热锥筒之间,推力器壳体的上部和下部分别套装有一个所述散热器,推力器壳体上套装有散热板,散热板位于两个散热器之间,散热圆筒的封闭端与推力器壳体固接。本发明用于多级会切磁场等离子体推力器。

    高速流动环境下等离子体强化放电的装置及方法

    公开(公告)号:CN103415135A

    公开(公告)日:2013-11-27

    申请号:CN201310392206.9

    申请日:2013-09-02

    Abstract: 高速流动环境下等离子体强化放电的装置及方法,它涉及一种等离子体放电装置及方法,以解决现有等离子体放电的装置电离不够充分的问题。装置:第一上接线柱与第一上铜质电极连接,第一下接线柱与第一下铜质电极连接,数个铜针按矩形阵列布置在第一上陶瓷板的表面上。方法:一、第一上接线柱和第二上接线柱均与电源的正极连接,第一下接线柱和第二下接线柱均与地线连接;二、第一上接线柱和第二上接线柱的电源均采用高频高压电源;三、上陶瓷云母板与第二上铜质电极、下陶瓷云母板与第二下铜质电极之间均用硅胶粘合;四、空气经过铜针区域时,由铜针放电并产生电离种子,电离种子在主电离区与空气碰撞形成强化放电。本发明用于超声速燃烧。

    一种控制会切磁场推力器羽流发散角度的方法

    公开(公告)号:CN103327721A

    公开(公告)日:2013-09-25

    申请号:CN201310253490.1

    申请日:2013-06-24

    CPC classification number: Y02E30/126

    Abstract: 一种控制会切磁场推力器羽流发散角度的方法,涉及一种会切磁场推力器磁分界面位形对羽流发散角度的控制方法,本发明解决了现有会切磁场推力器羽流发散角度控制困难的问题,本发明将一块环形羽流控制永磁体固定安装在会切磁场推力器通道出口最外面一块永磁体的外侧,推力器的阴极发出电子,向会切磁场推力器的放电通道内通入氙气,氙离子在氙离子与电子自洽产生的电场的作用下向放电通道外喷出去,产生向内的推力;更换轴向长度或径向长度不同的环形羽流控制永磁体,使通道出口的磁分界面位形的外凸程度减小,实现对氙离子加速方向的控制,即完成会切磁场推力器羽流发散角控制。本发明适用于会切磁场推力器羽流发散角度的控制。

    涡轮增压系统压气机风量分配控制的喘振保护方法及实现该方法的喘振保护装置

    公开(公告)号:CN102182700B

    公开(公告)日:2013-08-21

    申请号:CN201110130910.8

    申请日:2011-05-19

    Abstract: 涡轮增压系统压气机风量分配控制的喘振保护方法及实现该方法的喘振保护装置,属于涡轮增压系统压气机的喘振保护领域。它解决了现有涡轮增压系统压气机的喘振保护方法的安全裕度过于保守,使其无法快速响应当前的风量需求,导致锅炉性能降低的问题。它将设定的压气机风量给定信号和实时采集获得的压气机风量实际信号作差,再经过比例微分单元调节,生成风量控制信号;通过交叉限幅单元对风量控制信号进行处理,输出待调节风量信号,并根据该待调节风量信号选择相应的风量分配方法,然后根据所选择的风量分配方法对压气机的风量进行调节。本发明适用于涡轮增压系统压气机的喘振保护。

    利用一体化联合发电单元平抑规模化风电并网功率波动的不确定性的方法

    公开(公告)号:CN102738828A

    公开(公告)日:2012-10-17

    申请号:CN201210214820.1

    申请日:2012-06-27

    CPC classification number: Y02E10/763 Y02E60/16 Y02E70/30

    Abstract: 利用一体化联合发电单元平抑规模化风电并网功率波动的不确定性的方法,涉及一种抑规模化风电并网功率波动的不确定性的方法。它是为了解决大规模并网风电场功率波动平抑能力不足的问题。其方法:将规模化风电并网功率波动分解为可预报分量和不确定分量的叠加;利用一体化联合发电单元对步骤一中的不确定分量进行界估计,实现传统电源与风电的最优匹配;获取不确定分量的频谱,并对该频谱进行分析,将不确定分量分为超高频、高频、中频、低频四个部分;分别采用超高频跟踪平抑单元、高频跟踪平抑单元、中频跟踪平抑单元和低频跟踪平抑单元进行跟踪平抑;从而实现平抑规模化风电并网功率波动的不确定性。本发明适用于平抑规模化风电并网功率波动的不确定性。

    一种以主蒸汽流量作为调度变量获取汽轮机滑压曲线方法

    公开(公告)号:CN102661176A

    公开(公告)日:2012-09-12

    申请号:CN201210180860.9

    申请日:2012-06-04

    Abstract: 一种以主蒸汽流量作为调度变量获取汽轮机滑压曲线方法,涉及一种确定滑压曲线方法。针对以在不能用一条滑压曲线即可以满足供热抽汽量变化和背压变化运行状况的问题。本发明它的实现步骤为:根据供热抽汽机组的类型,选取M个主蒸汽流量;M为大于2的整数;针对每一个主蒸汽流量分别执行下述步骤:在选取的主蒸汽流量下选择该供热抽汽机组的N个不同的主蒸汽压力值,N为大于4的整数;计算供热抽汽机组的热耗值;根据最小二乘法将所述N个主蒸汽压力值和其相对应的热耗值进行曲线拟合,确定一个最优主蒸汽压力值;然后将得到的M个主蒸汽流量及其对应的最优主蒸汽压力数据进行线性拟合获得最终的滑压运行曲线。用于汽轮机滑压曲线的确定。

    基于磁聚焦的霍尔推力器
    109.
    发明公开

    公开(公告)号:CN102493936A

    公开(公告)日:2012-06-13

    申请号:CN201110421395.9

    申请日:2011-12-15

    Abstract: 基于磁聚焦的霍尔推力器,它涉及霍尔推力器。它为解决现有霍尔推进器由于高能离子对壁面材料进行溅射轰击,造成通道陶瓷壁面被击穿,使其性能发生大幅改变,最终造成推力器失效的问题。阳极设置在放电通道中部,阴极设置在放电通道出口处;外线圈和内线圈对称设置在放电通道的出口处两侧,和分别为轴向磁感应强度和径向磁感应强度;外线圈和内线圈产生的磁场位形的磁力线倾斜角为am,则通过改变外线圈4和内线圈5的励磁电流强度产生两种磁场位形:磁力线与所述径向方向重合,则am=0°;磁力线向阳极1方向倾斜,则am<0°。它通过影响轰击壁面的离子通量、能量及入射角度等溅射参数,实现降低通道壁面侵蚀、延长推力器寿命的方法。

    基于射流等离子体活化的超声速稳定燃烧方法

    公开(公告)号:CN101949550B

    公开(公告)日:2011-12-14

    申请号:CN201010298129.7

    申请日:2010-09-30

    Abstract: 基于射流等离子体活化的超声速稳定燃烧方法,它涉及一种超声速稳定燃烧的方法,以解决现有稳定火焰燃烧方法中的支板厚度较大,导致流动损失大、超声速燃烧性能低的问题。方法:一、第一L形通孔和第三L形通孔中均镀有陶瓷膜;二、第二L形通孔的输入端与燃油管连接,第一L形通孔和第三L形通孔的输入端分别与其对应的等离子体发生装置连接;三、燃油由第二L形通孔注入到主燃烧区处形成扩散火焰;等离子体发生装置产生的等离子体由第一L形通孔和第三L形通孔注入到主燃烧区处并喷射产生射流型的等离子体;四、等离子体促进了扩散火焰的燃烧并形成一股持续的燃烧火焰,实现超声速稳定燃烧。本发明用于超声速燃烧室中燃料的点火、混合和燃烧。

Patent Agency Ranking