-
公开(公告)号:CN102936836B
公开(公告)日:2014-05-14
申请号:CN201210522183.4
申请日:2012-12-07
Applicant: 苏州大学
Abstract: 本发明公开了一种用植物纳米银制备抗菌涤纶的方法。对经精练液前处理后的涤纶纤维/织物采用低温等离子体或碱减量方法进行表面结构修饰预处理,再置于植物纳米银水溶胶中浸渍处理,或将预处理后涤纶纤维/织物先置于银氨溶液中浸泡,再转移至植物叶片提取液-可溶性淀粉复合溶液中浸渍处理,即得到用植物纳米银制备的抗菌涤纶纤维或织物。本发明采用对涤纶进行表面结构修饰的方法,使其对纳米银粒子或银离子的吸附能力增强,吸附量明显增大,纳米银可长期附着、不易流失;获得的涤纶纤维/织物显示出优异持久的抗菌性能,吸湿透气性、抗静电能力、染色性能等得到了显著改善。
-
公开(公告)号:CN102936835B
公开(公告)日:2014-03-19
申请号:CN201210515529.8
申请日:2012-12-05
Applicant: 苏州大学
IPC: D06M11/83 , D06M15/15 , D06M101/10
Abstract: 本发明公开了一种纳米银抗菌真丝的制备方法。将未脱胶的真丝线或制品置于中性丝蛋白盐混合液中脱去丝胶后,将其浸泡于硝酸银水溶液中处理,再置于植物叶片提取物分散液中浸轧处理,取出后经水洗、烘干或晾干,得到一种原位生成纳米银的抗菌真丝线或制品。本发明技术方案通过对丝素纤维的部分原纤结构分离或膨化,再经两步浸渍,依次实现真丝表面和纤维内部对银离子的吸附固定、原位生长和还原,生成的纳米银渗透分散于真丝纤维/织物内部和表面,得到的纳米银抗菌真丝产品具有长效抗菌功能和良好的耐洗性能。
-
公开(公告)号:CN103497279A
公开(公告)日:2014-01-08
申请号:CN201310483448.9
申请日:2013-10-16
Applicant: 苏州大学
IPC: C08F251/02 , C08F220/58 , C08B11/145 , B01J20/26 , C02F1/28 , C02F1/62
Abstract: 本发明公开了一种两性纤维素材料的制备方法,首先对纤维素进行碱预处理得到碱性纤维素,实现羟基活化,然后以3-氯-2羟丙基三甲基氯化铵作醚化剂对碱性纤维素进行季铵化改性得到季铵化纤维素,再用硝酸铈铵作引发剂,采用单体2-丙烯酰胺-2-甲基丙磺酸对季铵化纤维素进行磺酸化处理,从而实现纤维素的两性化。制备条件相对温和,工艺简单,操作方便,易规模化,有很好的工业化推广前景,产品吸附能力强,能够用于重金属离子废水、有机废水处理等领域,也可作为其它材料的功能性载体使用。
-
公开(公告)号:CN114351287B
公开(公告)日:2023-10-13
申请号:CN202210067004.6
申请日:2022-01-20
Applicant: 苏州大学
Abstract: 本发明公开了基于微流纺复合载药纤维的制备方法,包括以下步骤:A1、取聚乙烯吡咯烷酮和海藻酸钠,分别加入水后搅拌并加热,得到聚乙烯吡咯烷酮溶液和海藻酸钠溶液;A2、将聚乙烯吡咯烷酮溶液和海藻酸钠溶液混合,再加入对乙酰氨基酚,形成混合纺丝液;A3、以混合纺丝液为芯层,以氯化钙溶液为鞘流层流,通过同轴微流体纺丝的方式制备连续的复合载药纤维。结合微流体纺丝技术和离子交联固化方法,制成排列整齐,直径均一复合载药纤维,提高了复合载药纤维的载药量,实现复合载药纤维的药物缓释效果。
-
公开(公告)号:CN115637591A
公开(公告)日:2023-01-24
申请号:CN202211026709.X
申请日:2022-08-25
Applicant: 苏州大学
IPC: D06M15/59 , D06M11/83 , D06M13/463 , D06M101/06
Abstract: 本发明公开了有机/无机复合纳米抗菌剂及制备方法、抗菌织物及制备方法,抗菌剂由复合纳米抗菌分散液形成,复合纳米抗菌分散液的原料组成包括:浓度为0.1~10g/L的超支化聚酰胺水溶液;浓度为0.01~0.1mol/L的硝酸银水溶液;以及2,3‑环氧丙基三甲基氯化铵;超支化聚酰胺水溶液和硝酸银水溶液的用量满足硝酸银与超支化聚酰胺的质量比为1:(1~2);2,3‑环氧丙基三甲基氯化铵的用量为超支化聚酰胺质量的0~2倍。本发明通过简单的浸轧处理即可完成纺织品纳米材料的自组装抗菌功能化整理,且组装效率高、资源利用率高、整理用水可循环使用,并且抗菌功能纺织品具有优异的抗菌性能和耐洗牢度。
-
公开(公告)号:CN115192551A
公开(公告)日:2022-10-18
申请号:CN202210674037.7
申请日:2022-06-14
Applicant: 苏州大学
Abstract: 本发明公开了海藻酸钠/普鲁兰多糖微纤维载体及其制备方法、缓释药物及制备方法、组合物,微纤维载体,包括芯层以及形成与芯层外侧的壳层,所述芯层为海藻酸钠与普鲁兰多糖的共混物,所述壳层为在所述芯层表面至少由海藻酸钠与氯化钙复合形成。本发明提供了一种具有良好负载性能和药物缓释性能的缓释药物及其组合物方案,并且具有简单、高效、可控的加工性能,应用效能好。
-
公开(公告)号:CN115010985A
公开(公告)日:2022-09-06
申请号:CN202210723326.1
申请日:2022-06-23
Applicant: 苏州大学
Abstract: 本发明公开了一种rGO/PU导电海绵的制备方法,包括:S1、将氧化石墨烯分散于水,并与PU海绵充分混合,加入一定质量的抗坏血酸;S2、将混合溶液加热反应,在反应过程中氧化石墨烯逐渐团聚在PU上,且溶液的颜色由黄褐色转成清色至无色时,取出反应物;S3、将反应物冷却后冷冻,形成稳定的导电网络;S4、待反应物至室温后,加热反应至氧化石墨烯被完全还原,形成更加稳固的还原氧化石墨烯导电网络;干燥即得rGO/PU导电海绵。利用PU海绵的三维立体结构作为还原氧化石墨烯的生长骨架,利用冰晶在生长过程的无序性来刺激还原氧化石墨烯的生长,由此在PU海绵的内部制备出三维空间结构的还原氧化石墨烯,提高rGO/PU导电海绵具有导电性、循环稳定性和灵敏性。
-
公开(公告)号:CN114395821A
公开(公告)日:2022-04-26
申请号:CN202210066131.4
申请日:2022-01-20
Applicant: 苏州大学
Abstract: 本发明公开了一种导电载药复合纤维的制备方法,包括以下步骤:S1、取PVP和SA,分别加入水后搅拌并加热,得到PVP溶液和SA溶液;S2、将PVP溶液和SA溶液混合,再加入APP,形成PVP/SA/AAP溶液;S3、向PVP/SA/AAP溶液中加入PEDOT:PSS水溶液,形成PVP/SA/AAP/PEDOT:PSS混合纺丝液;S4、以混合纺丝液为芯层,以CaCl2溶液溶液为鞘流层流,通过同轴微流体纺丝的方式制备连续的导电载药复合纤维。利用离子交联固化方法和同轴微流体纺丝技术制备形成导电载药纤维,使得制备后的导电载药纤维具备电场相应的能力,并在电压的刺激下,实现导电载药纤维的AAP可控释放。
-
公开(公告)号:CN114351287A
公开(公告)日:2022-04-15
申请号:CN202210067004.6
申请日:2022-01-20
Applicant: 苏州大学
Abstract: 本发明公开了基于微流纺复合载药纤维的制备方法,包括以下步骤:A1、取聚乙烯吡咯烷酮和海藻酸钠,分别加入水后搅拌并加热,得到聚乙烯吡咯烷酮溶液和海藻酸钠溶液;A2、将聚乙烯吡咯烷酮溶液和海藻酸钠溶液混合,再加入对乙酰氨基酚,形成混合纺丝液;A3、以混合纺丝液为芯层,以氯化钙溶液为鞘流层流,通过同轴微流体纺丝的方式制备连续的复合载药纤维。结合微流体纺丝技术和离子交联固化方法,制成排列整齐,直径均一复合载药纤维,提高了复合载药纤维的载药量,实现复合载药纤维的药物缓释效果。
-
公开(公告)号:CN114306716A
公开(公告)日:2022-04-12
申请号:CN202210078231.9
申请日:2022-01-24
Applicant: 苏州大学 , 江苏五龙针织有限公司 , 江苏五龙纳米科技有限公司
Abstract: 本发明公开了基于织物的温敏凝胶式医用敷料的制备方法,包括以下步骤:S1将壳聚糖溶解于盐酸溶液中,搅拌得到壳聚糖溶液;将甘油磷酸钠溶解于去离子水后,将其加入壳聚糖溶液中,得到壳聚糖/甘油磷酸钠溶液;S2将京尼平溶解于乙醇溶液中,加入壳聚糖/甘油磷酸钠溶液,得到京尼平改性壳聚糖温敏凝胶溶液;S3将乙酰氨基酚药物溶解于上述京尼平改性壳聚糖温敏凝胶溶液,将织物浸渍于载药凝胶溶液中直至凝胶溶液均匀分散于织物内外,将浸渍完凝胶溶液的织物通过容器密闭置于目标温度环境中使其凝胶化,本发明对温敏凝胶进行交联改性,利用温敏凝胶的溶‑凝胶转变的特性,方便对织物进行快速且均匀的整理,具备规模化制备的潜力。
-
-
-
-
-
-
-
-
-