-
公开(公告)号:CN110355139A
公开(公告)日:2019-10-22
申请号:CN201910740402.8
申请日:2019-08-12
Applicant: 广州特种承压设备检测研究院
Abstract: 本发明涉及一种基于内窥镜的清洁装置,包括内窥镜探测管和泵体,所述内窥镜探测管包括清洁剂输运管道,所述清洁剂输运管道包括清洁端和与所述清洁端相对设置的输入端。所述泵体包括第一进液端和第一出液端,当所述内窥镜探测管处于清洁状态时,所述第一出液端和所述输入端连通用于将清洁剂输送至所述清洁端,所述第二出液端用于和所述第一进液端连通。该基于内窥镜的清洁装置具有操作简便的优点。另外,由于内窥镜探测管可以根据使用环境来制成不同的型号,可以适用于多种环境。
-
公开(公告)号:CN110304616A
公开(公告)日:2019-10-08
申请号:CN201910588187.4
申请日:2019-07-02
Applicant: 广州特种承压设备检测研究院
IPC: C01B25/37 , C09D163/00 , C09D5/08
Abstract: 本发明涉及一种铈掺杂的磷酸锌材料及其制备方法,包含其的防腐涂料。该制备方法包括如下步骤:(1)于硫酸锌的水溶液中,加入铈盐,得混合液;(2)搅拌下,于步骤(1)所述混合液中加入磷酸盐,反应生成沉淀物,陈化;(3)收集步骤(2)所述陈化后的沉淀物,洗涤,干燥,研磨;即得。该制备方法能够制备得到片状的铈掺杂磷酸锌材料,其具有优良的力学性能和耐腐蚀性能,且制备方法条件温和、易于控制,绿色环保。
-
公开(公告)号:CN108642484B
公开(公告)日:2019-08-23
申请号:CN201810669324.2
申请日:2018-06-26
Applicant: 广州特种承压设备检测研究院
Abstract: 本发明涉及一种硅烷/氧化石墨烯复合钝化液及其制备方法与应用。该制备方法包括以下步骤:将水性硅烷偶联剂、水和醇按体积比为1:(7~9):(0.8~1.2)进行混合,得混合液;在混合液中加入氧化石墨烯,超声处理得分散液;调节分散液的酸碱度至pH值为2~4,进行水解得硅烷/氧化石墨烯复合钝化液。上述硅烷/氧化石墨烯复合钝化液及其制备方法,结合氧化石墨烯和硅烷两者的优点,利用氧化石墨烯与水性硅烷偶联剂共水解,实现氧化石墨烯的硅烷功能化,利用硅烷偶联剂与金属基底之间形成的共价键,提高膜层与金属基底之间的结合力,而层片状的氧化石墨烯可以增强膜层对腐蚀介质的物理屏蔽性能。
-
公开(公告)号:CN110128910A
公开(公告)日:2019-08-16
申请号:CN201910384006.6
申请日:2019-05-09
Applicant: 广州特种承压设备检测研究院
Abstract: 本发明涉及一种防腐涂料及其制备方法,该防腐涂料按重量份数计,原料包括以下组分:石墨烯粉体0.3份-1.2份、锌粉30份-80份、丙二醇甲醚13份-25份、水性环氧树脂固化剂13份-16份、乙二醇丁醚13份-25份、水性环氧树脂30份-80份、基材润湿剂0.5份-0.7份;所述石墨烯粉体的片径大小为4-7μm;所述锌粉的目数为3000-5000目。本发明将石墨烯粉体、锌粉、丙二醇甲醚、水性环氧树脂固化剂、丁二醇乙醚、水性环氧树脂、基材润湿剂按照特定的配比,可得到一种具有良好的防腐性能、稳定性能的防腐涂料。
-
公开(公告)号:CN109807956A
公开(公告)日:2019-05-28
申请号:CN201910085940.8
申请日:2019-01-29
Applicant: 广州特种承压设备检测研究院
IPC: B26D1/06 , B26D5/00 , B26D5/08 , B26D7/01 , B26D7/06 , B26D7/24 , B26D7/27 , B26D7/26 , G01N1/04 , G01N1/28
Abstract: 本发明涉及一种切口制样设备及切口制样方法。切口制样设备包括夹持装置、切割移动装置、切割刀、控制装置以及测量装置。其中,夹持装置用于夹持固定管材。切割刀用于切割管材。切割移动装置与切割刀连接,用于驱切割刀移动。测量装置安装在切割移动装置上,用于获取管材的位置参数以及管材的结构参数。控制装置与测量装置以及切割移动装置电连接,用于根据预设的切割深度以及切割长度并结合位置参数与结构参数生成切割流程,同时依据切割流程控制切割移动装置,以使切割移动装置驱动切割刀对管材进行切割。从而实现对管材进行全自动切口制样,避免了人为操作所带来的切割误差,提高了管材切口制样的精确度与稳定性。
-
公开(公告)号:CN107189583B
公开(公告)日:2019-05-14
申请号:CN201710487267.1
申请日:2017-06-23
Applicant: 广州特种承压设备检测研究院
IPC: C09D133/00 , C09D7/61
Abstract: 本发明公开了一种纳米隔热涂料,其特征在于包括:水性丙烯酸涂料以及添加于所述水性丙烯酸涂料中的复合核壳结构纳米粉体,所述复合核壳结构纳米粉体包括:第一内核,所述第一内核为锑摩尔掺杂浓度为1%~10%的锑掺杂二氧化锡纳米粉体;中间层,所述中间层为包覆于所述第一内核外的二氧化硅层,所述第一内核和中间层构成中间粉体;外层,所述外层为包覆于所述中间粉体外的锑摩尔掺杂浓度为5%~15%的锑掺杂二氧化锡纳米粉体层。所述纳米隔热涂料的生产设备及工艺方法简单,经济成本低。该方法制备出的具有复合核壳结构纳米粉体的隔热涂料,粉体的分散性比单纯使用锑掺杂二氧化锡纳米材料的隔热涂料好,隔热效果也更佳。
-
公开(公告)号:CN109648767A
公开(公告)日:2019-04-19
申请号:CN201910127391.6
申请日:2019-02-20
Applicant: 广州特种承压设备检测研究院
Abstract: 本发明涉及一种压塑成型装置及压塑成型方法,该压塑成型装置包括恒温箱、第一压板、第二压板、驱动机构、加热组件、冷却组件和控制器。驱动机构用于驱动第一压板向靠近或远离第二压板的方向移动。加热组件用于加热恒温箱内的空气。冷却组件用于冷却恒温箱内的空气。控制器与驱动机构、加热组件及冷却组件均电性连接,控制器用于控制驱动机构、加热组件和冷却组件的运行。该压塑成型装置及压塑成型方法能提高高分子材料的加工效率,且高分子材料在加工过程中受热均匀,能均匀结晶,得到的压塑成型产品的合格率较高,且升温过程和降温过程可控,能有效提高高分子材料的熔融和重结晶均匀度,得到的压塑成型产品的合格率较高。
-
公开(公告)号:CN108680649A
公开(公告)日:2018-10-19
申请号:CN201810537009.4
申请日:2018-05-30
Applicant: 广州特种承压设备检测研究院
CPC classification number: G01N29/069 , F17D5/06 , G01N2291/023 , G01N2291/269
Abstract: 本发明涉及一种内衬防腐蚀管道的缺陷成像方法,包括:在内衬防腐蚀管道加载成像激励信号;采集反馈的成像激励反射信号和成像激励透射信号;分别获取成像激励反射信号的弯曲模态导波和成像激励透射信号的弯曲模态导波,并对两种信号的弯曲模态导波分别进行时间反演处理,获得两种信号的时间反演信号;对两种信号的时间反演信号分别进行激励反演,获得两组激励反演数据;对两组激励反演数据进行时间和空间上的聚焦处理,获得振动云图;将振动云图转换为三维彩色点云云图,以对内衬防腐蚀管道的缺陷进行成像。通过将内衬防腐蚀管道进行三维彩色点云云图成像处理,可以直观清楚地获悉缺陷位置及缺陷情况,大大方便了后续对内衬防腐蚀管道的维修工作。
-
公开(公告)号:CN108642484A
公开(公告)日:2018-10-12
申请号:CN201810669324.2
申请日:2018-06-26
Applicant: 广州特种承压设备检测研究院
Abstract: 本发明涉及一种硅烷/氧化石墨烯复合钝化液及其制备方法与应用。该制备方法包括以下步骤:将水性硅烷偶联剂、水和醇按体积比为1:(7~9):(0.8~1.2)进行混合,得混合液;在混合液中加入氧化石墨烯,超声处理得分散液;调节分散液的酸碱度至pH值为2~4,进行水解得硅烷/氧化石墨烯复合钝化液。上述硅烷/氧化石墨烯复合钝化液及其制备方法,结合氧化石墨烯和硅烷两者的优点,利用氧化石墨烯与水性硅烷偶联剂共水解,实现氧化石墨烯的硅烷功能化,利用硅烷偶联剂与金属基底之间形成的共价键,提高膜层与金属基底之间的结合力,而层片状的氧化石墨烯可以增强膜层对腐蚀介质的物理屏蔽性能。
-
公开(公告)号:CN108640107A
公开(公告)日:2018-10-12
申请号:CN201810738611.4
申请日:2018-07-06
Applicant: 广州特种承压设备检测研究院
IPC: C01B32/19
Abstract: 本发明涉及一种用于高质量石墨烯量产的快速剥离石墨的插层剂,包括过渡金属卤盐、氮源物质和有机溶剂;所述过渡金属卤盐、氮源物质和有机溶剂的质量比为(1~10):1:(2~10)。其中,过渡金属卤盐可以与氮源物质或者有机溶剂形成共晶,其熔点低于每一组分的熔点,甚至混合后的插层剂在室温下即为液态,插入石墨形成石墨层间化合物,从而降低了反应温度、制备成本和难度;同时氮源物质与有机溶剂间也可以形成氢键,使得氮源物质与有机溶剂的结合体在石墨烯层间稳定存在,避免制备的石墨烯层间堆积,从而提高了剥离效率与产品质量。且本发明的插层剂在球磨过程中不会发生化学反应,可以通过离心将插层剂与石墨层间化合物分离,分离后的插层剂可循环使用,节能环保。
-
-
-
-
-
-
-
-
-