模型间的特征向后兼容学习方法、电子设备及存储介质

    公开(公告)号:CN118690201B

    公开(公告)日:2024-11-12

    申请号:CN202411155676.8

    申请日:2024-08-22

    Abstract: 本申请提出了一种模型间的特征向后兼容学习方法,通过获取第一分类模型、第二分类模型以及训练数据集;基于第一分类模型以及第二分类模型计算每个子数据集对应的第一特征值以及第二特征值;对第一特征值进行扰动计算,得到对应的第三特征值;基于第二分类模型计算每个数据样本对应的目标特征向量,并根据目标特征向量与第一特征值之间构造负样本对,根据目标特征向量与第三特征值之间构造正样本对,计算得到第一损失函数;基于第二分类模型对训练数据集进行分类,根据第二分类模型的分类正确率计算得到第二分类模型的第二损失函数;基于第一损失函数以及第二损失函数更新第二分类模型的模型参数。该方法能够提高新模型的判别能力。

    模型间的特征向后兼容学习方法、电子设备及存储介质

    公开(公告)号:CN118690201A

    公开(公告)日:2024-09-24

    申请号:CN202411155676.8

    申请日:2024-08-22

    Abstract: 本申请提出了一种模型间的特征向后兼容学习方法,通过获取第一分类模型、第二分类模型以及训练数据集;基于第一分类模型以及第二分类模型计算每个子数据集对应的第一特征值以及第二特征值;对第一特征值进行扰动计算,得到对应的第三特征值;基于第二分类模型计算每个数据样本对应的目标特征向量,并根据目标特征向量与第一特征值之间构造负样本对,根据目标特征向量与第三特征值之间构造正样本对,计算得到第一损失函数;基于第二分类模型对训练数据集进行分类,根据第二分类模型的分类正确率计算得到第二分类模型的第二损失函数;基于第一损失函数以及第二损失函数更新第二分类模型的模型参数。该方法能够提高新模型的判别能力。

Patent Agency Ranking