-
公开(公告)号:CN109726336B
公开(公告)日:2022-11-01
申请号:CN201811574899.2
申请日:2018-12-21
Applicant: 长安大学
IPC: G06F16/9537
Abstract: 一种结合出行兴趣与社交偏好的POI推荐方法,根据LBSN中用户历史POI数据分布学习用户出行行为,根据当前位置预测用户未来出行访问的POI;通过提取主题向量构建社交关联的兴趣相似;再构造异构出行信息网络,建立出行行为的兴趣相似;综合社交兴趣相似分析和出行行为相似分析,确定相似群体;结合预测的用户未来出行访问的POI以及用户的相似群体产生候选POI集合,通过计算兴趣度发现TOP‑N个用户最可能去的POI。在兼顾位置预测的同时利用社交兴趣和出行偏好发现用户的相似群体,利用相似群体而不是朋友用户可以全面提供更合适的兴趣点推荐给用户,并且缓解LBSN中数据稀疏的问题,从而可以更好地提高推荐效果。
-
公开(公告)号:CN109726336A
公开(公告)日:2019-05-07
申请号:CN201811574899.2
申请日:2018-12-21
Applicant: 长安大学
IPC: G06F16/9537
Abstract: 一种结合出行兴趣与社交偏好的POI推荐方法,根据LBSN中用户历史POI数据分布学习用户出行行为,根据当前位置预测用户未来出行访问的POI;通过提取主题向量构建社交关联的兴趣相似;再构造异构出行信息网络,建立出行行为的兴趣相似;综合社交兴趣相似分析和出行行为相似分析,确定相似群体;结合预测的用户未来出行访问的POI以及用户的相似群体产生候选POI集合,通过计算兴趣度发现TOP-N个用户最可能去的POI。在兼顾位置预测的同时利用社交兴趣和出行偏好发现用户的相似群体,利用相似群体而不是朋友用户可以全面提供更合适的兴趣点推荐给用户,并且缓解LBSN中数据稀疏的问题,从而可以更好地提高推荐效果。
-