一种基于深度学习的个性化文本推荐方法

    公开(公告)号:CN111209386A

    公开(公告)日:2020-05-29

    申请号:CN202010013952.2

    申请日:2020-01-07

    Inventor: 程克非 郭小勇

    Abstract: 本发明涉及一种基于深度学习的个性化文本推荐方法,包括以下步骤:S1:用户浏览新闻的历史行为数据和文本数据预处理;S2:特征提取器建模,具体包括:S21:隐藏层设计;S22:输出层设计;S3:个性化推荐模型建模,具体包括:S31:一维卷积网络层设计;S32:分类输出层与损失函数设计。本发明有效的解决了操作数据稀疏性的问题,并且通过使用负采样技术增强了模型训练效率;引入浏览时长作为全局变量,通过最终的目的来优化编码效果;通过利用项目嵌入的编码方式,进而有效的解决了项目冷启动的问题;减少了深层结构,增加并行的层次结构,卷积层内权重共享,参数相对较少。

    一种基于深度学习的个性化文本推荐方法

    公开(公告)号:CN111209386B

    公开(公告)日:2022-04-12

    申请号:CN202010013952.2

    申请日:2020-01-07

    Inventor: 程克非 郭小勇

    Abstract: 本发明涉及一种基于深度学习的个性化文本推荐方法,包括以下步骤:S1:用户浏览新闻的历史行为数据和文本数据预处理;S2:特征提取器建模,具体包括:S21:隐藏层设计;S22:输出层设计;S3:个性化推荐模型建模,具体包括:S31:一维卷积网络层设计;S32:分类输出层与损失函数设计。本发明有效的解决了操作数据稀疏性的问题,并且通过使用负采样技术增强了模型训练效率;引入浏览时长作为全局变量,通过最终的目的来优化编码效果;通过利用项目嵌入的编码方式,进而有效的解决了项目冷启动的问题;减少了深层结构,增加并行的层次结构,卷积层内权重共享,参数相对较少。

Patent Agency Ranking