-
公开(公告)号:CN111950515A
公开(公告)日:2020-11-17
申请号:CN202010870140.X
申请日:2020-08-26
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于语义特征金字塔网络的小人脸检测方法,属于人脸检测技术领域。其中,所述方法包括以下步骤:步骤1.以SFD人脸检测方法为基础模型,为了增强预测特征的语义信息,本发明设计了一个语义特征金字塔网络。步骤2.为了提高小人脸的召回率,减少固定分类阈值造成的错误分类样本数量,本发明提出了一个尺度自适应匹配算法,进行anchor匹配和样本分类。步骤3.为了缓解网络中正负样本不平衡问题,本发明采用focal loss计算网络的分类损失,通过迭代训练、更新参数得到最终的网络模型。在增加少量计算量的情况下,本发明有效的提取了小人脸检测所必需的语义信息,增强了网络的特征表达能力,提高了小人脸的召回率,缓解了检测器的样本不平衡问题。
-
公开(公告)号:CN111950515B
公开(公告)日:2022-10-18
申请号:CN202010870140.X
申请日:2020-08-26
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于语义特征金字塔网络的小人脸检测方法,属于人脸检测技术领域。其中,所述方法包括以下步骤:步骤1.以SFD人脸检测方法为基础模型,为了增强预测特征的语义信息,本发明设计了一个语义特征金字塔网络。步骤2.为了提高小人脸的召回率,减少固定分类阈值造成的错误分类样本数量,本发明提出了一个尺度自适应匹配算法,进行anchor匹配和样本分类。步骤3.为了缓解网络中正负样本不平衡问题,本发明采用focal loss计算网络的分类损失,通过迭代训练、更新参数得到最终的网络模型。在增加少量计算量的情况下,本发明有效的提取了小人脸检测所必需的语义信息,增强了网络的特征表达能力,提高了小人脸的召回率,缓解了检测器的样本不平衡问题。
-