一种基于级联深度神经网络模型的脑胶质瘤分割方法

    公开(公告)号:CN112837276B

    公开(公告)日:2023-09-29

    申请号:CN202110075763.2

    申请日:2021-01-20

    Inventor: 左瑾 栾晓 李智星

    Abstract: 本发明涉及一种基于级联深度神经网络模型的脑胶质瘤分割方法,属于医学图像处理领域。该模型包括WT‑Net、TC‑Net和ET‑Net编码解码子模块,并且WT‑Net编码解码子模块与TC‑Net编码解码子模块级联,TC‑Net编码解码子模块与ET‑Net编码解码子模块级联;编码解码子模块皆包括编码部分、解码部分和跳层连接。本发明将复杂的多分类问题分解成三个二分类问题,级联模型解决了样本利用程度不高、训练样本不均衡以及特征提取过程中全局信息损失问题,实现了MRI图像脑胶质瘤自动分割,对医生诊断病情具有辅助作用。

    一种基于级联深度神经网络模型的脑胶质瘤分割方法

    公开(公告)号:CN112837276A

    公开(公告)日:2021-05-25

    申请号:CN202110075763.2

    申请日:2021-01-20

    Inventor: 左瑾 栾晓 李智星

    Abstract: 本发明涉及一种基于级联深度神经网络模型的脑胶质瘤分割方法,属于医学图像处理领域。该模型包括WT‑Net、TC‑Net和ET‑Net编码解码子模块,并且WT‑Net编码解码子模块与TC‑Net编码解码子模块级联,TC‑Net编码解码子模块与ET‑Net编码解码子模块级联;编码解码子模块皆包括编码部分、解码部分和跳层连接。本发明将复杂的多分类问题分解成三个二分类问题,级联模型解决了样本利用程度不高、训练样本不均衡以及特征提取过程中全局信息损失问题,实现了MRI图像脑胶质瘤自动分割,对医生诊断病情具有辅助作用。

Patent Agency Ranking