-
公开(公告)号:CN115222057A
公开(公告)日:2022-10-21
申请号:CN202210569676.7
申请日:2022-05-24
Applicant: 西安交通大学
Abstract: 本发明公开了一种联邦学习梯度攻击防御方法、系统、设备及介质,包括:利用本地数据对模型进行训练,得到本地模型,计算得到本地梯度;获联邦学习的压缩阈值,计算得到梯度掩码矩阵;根据梯度掩码矩阵,对本地梯度进行压缩,得到压缩后的梯度;对更新后的梯度掩码矩阵,添加噪声,得到添加有噪声的梯度掩码矩阵;根据压缩后的梯度和所述添加有噪声的梯度掩码矩阵,得到添加有噪声的梯度;对添加有噪声的梯度,执行聚合算法,得到全局梯度;根据全局梯度,对本地模型进行更新,并开始下一轮模型训练;本发明结合差分隐私技术,利用添加有噪声的梯度能够有效防止梯度攻击;通过全局矩阵,实现对添加的噪声量的控制,有效提高了模型的精度。