-
公开(公告)号:CN109840833B
公开(公告)日:2020-11-10
申请号:CN201910112719.7
申请日:2019-02-13
Applicant: 苏州大学
IPC: G06Q30/06 , G06F16/9535 , G06K9/62
Abstract: 本发明公开了一种贝叶斯协同过滤推荐方法。本发明一种贝叶斯协同过滤推荐方法,包括:模型的输入为协同过滤推荐系统的评分矩阵分解为两个潜在矩阵其中对于M×K的矩阵Uik表示用户i属于组k的概率,Uik∈(0,1);对于N×K的矩阵Vjk表示用户组k喜欢商品j的证据,即预测评分矩阵R'=UVT;由于数据集R比较稀疏,所以观察的条目可以用集合Ω={(i,j)|Rij is observed};对这个问题采取概率方法;对观测数据表示一个似然函数,并将潜在矩阵作为随机变量来处理;当假设R的每个值来自U和V的乘积时,加上一些高斯噪声本发明的有益效果:用户的喜好多种多样,不会像小数据集中体现出口味较为一致。现实数据集中存在大量数据缺失问题,如果对证据不足难以预测的值,都预测为中值或者为平均值就失去了推荐的意义。
-
公开(公告)号:CN109840833A
公开(公告)日:2019-06-04
申请号:CN201910112719.7
申请日:2019-02-13
Applicant: 苏州大学
IPC: G06Q30/06 , G06F16/9535 , G06K9/62
Abstract: 本发明公开了一种贝叶斯协同过滤推荐方法。本发明一种贝叶斯协同过滤推荐方法,包括:模型的输入为协同过滤推荐系统的评分矩阵 分解为两个潜在矩阵 其中对于M×K的矩阵Uik表示用户i属于组k的概率,Uik∈(0,1);对于N×K的矩阵Vjk表示用户组k喜欢商品j的证据,即预测评分矩阵R'=UVT;由于数据集R比较稀疏,所以观察的条目可以用集合Ω={(i,j)|Ri jis observed};对这个问题采取概率方法;对观测数据表示一个似然函数,并将潜在矩阵作为随机变量来处理;当假设R的每个值来自U和V的乘积时,加上一些高斯噪声本发明的有益效果:用户的喜好多种多样,不会像小数据集中体现出口味较为一致。现实数据集中存在大量数据缺失问题,如果对证据不足难以预测的值,都预测为中值或者为平均值就失去了推荐的意义。
-