基于无监督类型约束的上下文感知知识补全方法及系统

    公开(公告)号:CN114020923B

    公开(公告)日:2025-01-07

    申请号:CN202111158961.1

    申请日:2021-09-30

    Applicant: 福州大学

    Inventor: 汪璟玢 赖晓连

    Abstract: 本发明涉及一种基于无监督类型约束的上下文感知知识补全方法及系统,该方法构建基于无监督类型约束的上下文感知模型,首先,通过设定时间粒度,对数据集预处理,以使数据在时间分布上均衡;其次,在四元组结构模块中,通过邻居编码器聚合实体上下文信息,增强实体的嵌入表示;在四元组类型模块中,将四元组嵌入到实数空间,四元组类型模块在无监督环境下获得类型约束的实体表示,通过实体潜在类型信息进一步约束实体嵌入表示,提高模型补全能力;最后,将四元组结构模块的得分与四元组类型模块的得分按照设定的权重聚合,获得四元组的最终得分。该方法及系统提高了实体嵌入的质量,提升了模型在知识补全任务上的性能。

    基于多尺度空洞卷积的时间知识图谱补全方法

    公开(公告)号:CN113553437A

    公开(公告)日:2021-10-26

    申请号:CN202110337763.5

    申请日:2021-03-30

    Applicant: 福州大学

    Inventor: 汪璟玢 赖晓连

    Abstract: 本发明涉及种基于多尺度空洞卷积的时间知识图谱补全方法,包括以下步骤:步骤S1:对待处理四元组数据进行处理后,使用LSTM建模时间序列和关系之间的特征表示;步骤S2:根据得到的特征表示,基于多尺度空洞卷积神经网络,获取多尺度特征映射;步骤S3:引入注意力机制帮助模型自适应地调整多尺度特征映射的权重,并得到加权后的特征映射;步骤S4:将得到的特征映射经过拉平操作变成向量,然后经过一个全连接层,将拉平后的向量映射到指定维度,最后与尾实体嵌入进行点积得到四元组的得分。本发明解决了传统卷积神经网络模型实体与关系间交互性差、参数量和计算量大的问题。

    基于无监督类型约束的上下文感知知识补全方法及系统

    公开(公告)号:CN114020923A

    公开(公告)日:2022-02-08

    申请号:CN202111158961.1

    申请日:2021-09-30

    Applicant: 福州大学

    Inventor: 汪璟玢 赖晓连

    Abstract: 本发明涉及一种基于无监督类型约束的上下文感知知识补全方法及系统,该方法构建基于无监督类型约束的上下文感知模型,首先,通过设定时间粒度,对数据集预处理,以使数据在时间分布上均衡;其次,在四元组结构模块中,通过邻居编码器聚合实体上下文信息,增强实体的嵌入表示;在四元组类型模块中,将四元组嵌入到实数空间,四元组类型模块在无监督环境下获得类型约束的实体表示,通过实体潜在类型信息进一步约束实体嵌入表示,提高模型补全能力;最后,将四元组结构模块的得分与四元组类型模块的得分按照设定的权重聚合,获得四元组的最终得分。该方法及系统提高了实体嵌入的质量,提升了模型在知识补全任务上的性能。

Patent Agency Ranking