基于双重图卷积神经网络的视角级文本情感分类系统

    公开(公告)号:CN115858788A

    公开(公告)日:2023-03-28

    申请号:CN202211634722.3

    申请日:2022-12-19

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于双重图卷积神经网络的视角级文本情感分类系统,包括文本预处理模块,用于对视角级文本进行特征化处理;文本语义信息获取模块,用于捕获文本的双向语义依赖关系;注意力编码模块,用于捕获文本单词序列的全局内部相关性并生成文本语义关系图;相关语义图卷积神经网络模块,将GCN作用于文本语义图来建模句子结构;文本句法信息获取模块,用于捕获基于依存句法的文本信息;依存句法图卷积神经网络模块,将GCN直接作用于句子依存关系树来建模句子结构;双向映射模块,用于交换语义GCN与句法GCN信息之间的相关特征;情感类别输出模块,利用分类函数得到最终的情感分类结果。

Patent Agency Ranking