一种图像视觉显著性检测拟合优化方法

    公开(公告)号:CN105913064A

    公开(公告)日:2016-08-31

    申请号:CN201610222896.7

    申请日:2016-04-12

    Applicant: 福州大学

    CPC classification number: G06K9/4671 G06T2207/10004

    Abstract: 本发明涉及一种图像视觉显著性检测拟合优化方法,包括以下步骤:S1:采用直方图统计显著性图像集和标注图像集中的显著性数据,分别形成自变量点集和因变量点集;S2:采用相应的拟合函数模型对自变量点集和因变量点集数据进行拟合,得到拟合函数;S3:将拟合函数作用到新的显著性图中的显著性数据上,得到拟合后的显著性数据;S4:对拟合后的显著性数据进行[0,255]约束处理,得到优化后的显著性图。该方法使各显著性检测算法优化后的显著性图比优化前更加接近用户标注的标准图,适用于多种显著性检测算法的优化。

    一种基于K-means聚类拟合的显著性检测优化方法

    公开(公告)号:CN107330431B

    公开(公告)日:2020-09-01

    申请号:CN201710522004.X

    申请日:2017-06-30

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于K‑means聚类拟合的显著性检测优化方法,包括以下步骤:步骤S1:提取图像的场景GIST特征;步骤S2:提取图像的颜色直方图特征;步骤S3:根据场景GIST特征和颜色直方图特征计算图像间的相似性;步骤S4:根据图像间的相似性对图像集合进行K‑means聚类,分成k个相互独立的图像簇;步骤S5:计算每个图像簇的拟合模型;步骤S6:判断新的输入图像所属的图像簇,将该图像簇的拟合模型作用在输入图像的显著性图上进行优化。该方法适用于多种显著性检测算法的优化,优化效果明显。

    一种基于K-means聚类拟合的显著性检测优化方法

    公开(公告)号:CN107330431A

    公开(公告)日:2017-11-07

    申请号:CN201710522004.X

    申请日:2017-06-30

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于K-means聚类拟合的显著性检测优化方法,包括以下步骤:步骤S1:提取图像的场景GIST特征;步骤S2:提取图像的颜色直方图特征;步骤S3:根据场景GIST特征和颜色直方图特征计算图像间的相似性;步骤S4:根据图像间的相似性对图像集合进行K-means聚类,分成k个相互独立的图像簇;步骤S5:计算每个图像簇的拟合模型;步骤S6:判断新的输入图像所属的图像簇,将该图像簇的拟合模型作用在输入图像的显著性图上进行优化。该方法适用于多种显著性检测算法的优化,优化效果明显。

    一种基于条件随机场的显著性检测优化方法

    公开(公告)号:CN108491883B

    公开(公告)日:2022-03-22

    申请号:CN201810256988.6

    申请日:2018-03-26

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于条件随机场的显著性检测优化方法,其特征在于,包括以下步骤:步骤S1:提取输入图像集合中各图像的全局深度卷积特征;步骤S2:根据全局深度卷积特征计算输入图像集合中两两图像之间的相似性;步骤S3:根据图像之间的相似性对输入图像集合进行K‑means聚类,形成k个相互独立的图像簇;步骤S4:采用网格搜索方法计算每个图像簇的全连接条件随机场最优参数;步骤S5:对于新的输入图像,判断其所属的图像簇,采用所属图像簇的全连接条件随机场最优参数对所述新的输入图像的显著性图进行优化。该方法适用于多种显著性检测算法的优化,且优化效果好。

    一种基于条件随机场的显著性检测优化方法

    公开(公告)号:CN108491883A

    公开(公告)日:2018-09-04

    申请号:CN201810256988.6

    申请日:2018-03-26

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于条件随机场的显著性检测优化方法,其特征在于,包括以下步骤:步骤S1:提取输入图像集合中各图像的全局深度卷积特征;步骤S2:根据全局深度卷积特征计算输入图像集合中两两图像之间的相似性;步骤S3:根据图像之间的相似性对输入图像集合进行K-means聚类,形成k个相互独立的图像簇;步骤S4:采用网格搜索方法计算每个图像簇的全连接条件随机场最优参数;步骤S5:对于新的输入图像,判断其所属的图像簇,采用所属图像簇的全连接条件随机场最优参数对所述新的输入图像的显著性图进行优化。该方法适用于多种显著性检测算法的优化,且优化效果好。

    一种图像视觉显著性检测拟合优化方法

    公开(公告)号:CN105913064B

    公开(公告)日:2017-03-08

    申请号:CN201610222896.7

    申请日:2016-04-12

    Applicant: 福州大学

    Abstract: 本发明涉及一种图像视觉显著性检测拟合优化方法,包括以下步骤:S1:采用直方图统计显著性图像集和标注图像集中的显著性数据,分别形成自变量点集和因变量点集;S2:采用相应的拟合函数模型对自变量点集和因变量点集数据进行拟合,得到拟合函数;S3:将拟合函数作用到新的显著性图中的显著性数据上,得到拟合后的显著性数据;S4:对拟合后的显著性数据进行[0,255]约束处理,得到优化后的显著性图。该方法使各显著性检测算法优化后的显著性图比优化前更加接近用户标注的标准图,适用于多种显著性检测算法的优化。

Patent Agency Ranking