-
公开(公告)号:CN113627518A
公开(公告)日:2021-11-09
申请号:CN202110904775.1
申请日:2021-08-07
Applicant: 福州大学
Abstract: 本发明提出一种利用迁移学习实现多通道卷积‑递归神经网络脑电情感识别模型的方法,其基于三心搏识别方法构建的双通道一维卷积神经网络模型作为源域模型进行迁移,得到目标域为脑电信号的多通道卷积‑递归神经网络脑电情感识别模型,解决了脑电信号标注数据十分稀缺的问题,并能够提高脑电信号情感预测准确度。通过对脑电数据集进行分解、归一化等预处理,提高数据处理的准确性;迁移得到的多通道卷积神经网络对脑电数据集中的多通道脑电信号进行特征提取;结合递归神经网络进行序列建模,提取多通道融合情感信息;通过自适应注意力模型和加权特征融合方式来实现特征的重新分布,得到完整的特征张量。
-
公开(公告)号:CN113627518B
公开(公告)日:2023-08-08
申请号:CN202110904775.1
申请日:2021-08-07
Applicant: 福州大学
IPC: G06F18/2135 , G06F18/25 , G06N3/0464 , G06N3/096 , A61B5/16 , A61B5/372
Abstract: 本发明提出一种利用迁移学习实现多通道卷积‑递归神经网络脑电情感识别模型的方法,其基于三心搏识别方法构建的双通道一维卷积神经网络模型作为源域模型进行迁移,得到目标域为脑电信号的多通道卷积‑递归神经网络脑电情感识别模型,解决了脑电信号标注数据十分稀缺的问题,并能够提高脑电信号情感预测准确度。通过对脑电数据集进行分解、归一化等预处理,提高数据处理的准确性;迁移得到的多通道卷积神经网络对脑电数据集中的多通道脑电信号进行特征提取;结合递归神经网络进行序列建模,提取多通道融合情感信息;通过自适应注意力模型和加权特征融合方式来实现特征的重新分布,得到完整的特征张量。
-