面向社区问答的问题分类方法及系统

    公开(公告)号:CN111353032B

    公开(公告)日:2022-06-14

    申请号:CN202010122754.X

    申请日:2020-02-27

    Applicant: 福州大学

    Inventor: 陈羽中 张衍坤

    Abstract: 本发明涉及一种面向社区问答的问题分类方法及系统,该方法包括以下步骤:步骤A:采集网络问答社区中用户所提问题以及对应的问题类别,构建问题分类训练集TS;步骤B:对问题分类训练集TS中的问题进行字符级编码和词语级编码,得到问题的表征向量,以此训练基于双通道神经网络的深度学习网络模型;步骤C:问题分类系统接受用户提交的问题,将问题输入到训练好的深度学习网络模型中,输出模型划分的问题所述类别。该方法及系统有利于提高社区问答中问题分类的准确性。

    一种融合CNN与双向LSTM的智能问答方法及系统

    公开(公告)号:CN110222163B

    公开(公告)日:2022-10-04

    申请号:CN201910497128.6

    申请日:2019-06-10

    Applicant: 福州大学

    Abstract: 本发明涉及一种融合CNN与双向LSTM的智能问答方法及系统,包括以下步骤:采集智能问答系统中的问题以及回答记录,构建问答对训练集QA;采集智能问答系统中每个用户的问题回答记录,构建用户的历史回答训练集UA;步骤C:使用问答对训练集QA以及用户的历史回复训练集UA,训练融合CNN与双向LSTM的深度学习网络模型M;步骤D:智能问答系统接受用户的提问,将提问输入到训练好的深度学习网络模型M中,输出匹配的答案。本发明融合CNN与双向LSTM,能够全面准确地提取影响智能问答精度的各项特征。

    一种融合CNN与双向LSTM的智能问答方法及系统

    公开(公告)号:CN110222163A

    公开(公告)日:2019-09-10

    申请号:CN201910497128.6

    申请日:2019-06-10

    Applicant: 福州大学

    Abstract: 本发明涉及一种融合CNN与双向LSTM的智能问答方法及系统,包括以下步骤:采集智能问答系统中的问题以及回答记录,构建问答对训练集QA;采集智能问答系统中每个用户的问题回答记录,构建用户的历史回答训练集UA;步骤C:使用问答对训练集QA以及用户的历史回复训练集UA,训练融合CNN与双向LSTM的深度学习网络模型M;步骤D:智能问答系统接受用户的提问,将提问输入到训练好的深度学习网络模型M中,输出匹配的答案。本发明融合CNN与双向LSTM,能够全面准确地提取影响智能问答精度的各项特征。

    一种针对XSS攻击的APT预警方法

    公开(公告)号:CN109088899A

    公开(公告)日:2018-12-25

    申请号:CN201811280577.7

    申请日:2018-10-30

    Applicant: 福州大学

    Abstract: 本发明涉及一种针对XSS攻击的APT预警方法,首先接收来自WEB应用防火墙的WEB攻击检测结果,并针对XSS攻击检测结果,模拟黑客绕过WEB应用防火墙拦截规则的行为,产生新的攻击规则,丰富XSS攻击规则库;然后结合APT攻击知识库,对XSS攻击检测结果进行标识,产生APT攻击标识结果;并将没有标识的XSS攻击添加到未知APT攻击集中;接着对未知APT攻击集合中进行预处理,得到未知APT攻击预处理结果集;利用基于MapReduce的分布式Aprior算法对未知APT攻击预处理结果集进行关联分析,产生APT关联规则,得到与XSS攻击对应的APT分析情报,作为APT威胁情报输出。本发明实现了对目前XSS攻击种类多样并主动防御的机制。

    基于RCNN-SPP网络的恶意域名检测方法及系统

    公开(公告)号:CN110225030A

    公开(公告)日:2019-09-10

    申请号:CN201910498923.7

    申请日:2019-06-10

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于SMOTE和RCNN-SPP网络的恶意域名检测方法,包括以下步骤:对训练集中的域名进行数据预处理,得到域名字符序列训练集D;利用改进的SMOTE算法,对域名字符序列训练集D进行均衡化数据合成,得到增强均衡化的训练集D’;构造并初始化包含基于空间金字塔SPP池化的循环卷积RCNN的神经网络模型;将训练集D’中的域名转换为固定长度的表征向量;将步骤D得到的域名的表征向量输入到RCNN-SPP神经网络模型,得到域名的特征向量;将域名的上下文向量输入到神经网络模型的全连接层,得到训练好的神经网络模型;将待判定的域名转换为字符序列,输入训练好的神经网络模型,输出判定结果。

    基于RCNN-SPP网络的恶意域名检测方法及系统

    公开(公告)号:CN110225030B

    公开(公告)日:2021-09-28

    申请号:CN201910498923.7

    申请日:2019-06-10

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于SMOTE和RCNN‑SPP网络的恶意域名检测方法,包括以下步骤:对训练集中的域名进行数据预处理,得到域名字符序列训练集D;利用改进的SMOTE算法,对域名字符序列训练集D进行均衡化数据合成,得到增强均衡化的训练集D’;构造并初始化包含基于空间金字塔SPP池化的循环卷积RCNN的神经网络模型;将训练集D’中的域名转换为固定长度的表征向量;将步骤D得到的域名的表征向量输入到RCNN‑SPP神经网络模型,得到域名的特征向量;将域名的上下文向量输入到神经网络模型的全连接层,得到训练好的神经网络模型;将待判定的域名转换为字符序列,输入训练好的神经网络模型,输出判定结果。

    一种针对XSS攻击的APT预警方法

    公开(公告)号:CN109088899B

    公开(公告)日:2021-04-27

    申请号:CN201811280577.7

    申请日:2018-10-30

    Applicant: 福州大学

    Abstract: 本发明涉及一种针对XSS攻击的APT预警方法,首先接收来自WEB应用防火墙的WEB攻击检测结果,并针对XSS攻击检测结果,模拟黑客绕过WEB应用防火墙拦截规则的行为,产生新的攻击规则,丰富XSS攻击规则库;然后结合APT攻击知识库,对XSS攻击检测结果进行标识,产生APT攻击标识结果;并将没有标识的XSS攻击添加到未知APT攻击集中;接着对未知APT攻击集合中进行预处理,得到未知APT攻击预处理结果集;利用基于MapReduce的分布式Aprior算法对未知APT攻击预处理结果集进行关联分析,产生APT关联规则,得到与XSS攻击对应的APT分析情报,作为APT威胁情报输出。本发明实现了对目前XSS攻击种类多样并主动防御的机制。

    面向社区问答的问题分类方法及系统

    公开(公告)号:CN111353032A

    公开(公告)日:2020-06-30

    申请号:CN202010122754.X

    申请日:2020-02-27

    Applicant: 福州大学

    Inventor: 陈羽中 张衍坤

    Abstract: 本发明涉及一种面向社区问答的问题分类方法及系统,该方法包括以下步骤:步骤A:采集网络问答社区中用户所提问题以及对应的问题类别,构建问题分类训练集TS;步骤B:对问题分类训练集TS中的问题进行字符级编码和词语级编码,得到问题的表征向量,以此训练基于双通道神经网络的深度学习网络模型;步骤C:问题分类系统接受用户提交的问题,将问题输入到训练好的深度学习网络模型中,输出模型划分的问题所述类别。该方法及系统有利于提高社区问答中问题分类的准确性。

Patent Agency Ranking