一种城市建筑物类型变化遥感检测方法

    公开(公告)号:CN117173573B

    公开(公告)日:2025-05-16

    申请号:CN202311195257.2

    申请日:2023-09-16

    Applicant: 福州大学

    Abstract: 本发明提出了一种城市建筑物类型变化遥感检测方法。构建一种基于高分辨率遥感影像的城市建筑物类型变化检测模型,具体由语义分割和变化检测两大模块组成。语义分割模块利用Swim Transformer作为编码器,提升特征提取过程中的全局感知能力。通过不同任务的参数共享机制同时学习建筑物类型信息和边界信息,解决建筑物类型变化的检测问题,并在特征提取阶段融入多尺度特征对比学习,提升网络对变化地物的感知能力。配合变化检测模块,该方法可同时识别建筑物的边界和类型变化信息。本发明集成了端到端的深度神经网络,实现了利用高分辨率遥感影像自动检测城市建筑物类型变化。

    一种城市建筑物类型变化遥感检测方法

    公开(公告)号:CN117173573A

    公开(公告)日:2023-12-05

    申请号:CN202311195257.2

    申请日:2023-09-16

    Applicant: 福州大学

    Abstract: 本发明提出了一种城市建筑物类型变化遥感检测方法。构建一种基于高分辨率遥感影像的城市建筑物类型变化检测模型,具体由语义分割和变化检测两大模块组成。语义分割模块利用Swim Transformer作为编码器,提升特征提取过程中的全局感知能力。通过不同任务的参数共享机制同时学习建筑物类型信息和边界信息,解决建筑物类型变化的检测问题,并在特征提取阶段融入多尺度特征对比学习,提升网络对变化地物的感知能力。配合变化检测模块,该方法可同时识别建筑物的边界和类型变化信息。本发明集成了端到端的深度神经网络,实现了利用高分辨率遥感影像自动检测城市建筑物类型变化。

Patent Agency Ranking