-
公开(公告)号:CN119228789A
公开(公告)日:2024-12-31
申请号:CN202411727880.2
申请日:2024-11-28
Applicant: 神州医疗科技股份有限公司
IPC: G06T7/00 , G06T5/40 , G06T5/70 , G06T7/136 , G06T7/194 , G06T7/90 , G06V10/762 , G06V10/764
Abstract: 本发明公开了一种面向病理图像的基于大模型的图像分析和诊断方法及系统,涉及图像处理技术领域。具体公开了面向病理图像的基于大模型的图像分析和诊断方法,包括:将多个病理图像类型、多个癌种的多个病理图像进行归一化处理,并对各病理图像进行前景提取;将每个病理图像前景进行归一化处理后,将处理后的各病理图像前景切分为多个patch图像块;对每个病理图像的多个patch图像块进行癌种预测训练。本发明能够快速定位到病理图像的显著区域,从而实现更高效、准确的病理图像的疾病癌种预测。
-
公开(公告)号:CN117612711B
公开(公告)日:2024-05-03
申请号:CN202410087069.6
申请日:2024-01-22
Applicant: 神州医疗科技股份有限公司
IPC: G16H50/20 , G06F18/213 , G06F18/25 , G06F18/24
Abstract: 本发明公开了一种分析肝癌复发数据的多模态预测模型构建方法及系统,通过将临床文本、影像、病理多个模态数据进行整合,基于多种模态数据和多种融合策略构建了分析肝癌复发数据的多模态预测模型,相比单模态建模,多模态建模能提高模型预测的准确性,弥补单一数据的局限性,本方案对各个模态的特征进行单独调优,全面反映肝癌复发数据的复杂机制,对于肝癌复发数据的分析更为完备,还能增强模型的泛化能力,更好地适用于医学应用场景,辅助临床决策。
-
公开(公告)号:CN117649418A
公开(公告)日:2024-03-05
申请号:CN202410128271.9
申请日:2024-01-30
Applicant: 神州医疗科技股份有限公司
IPC: G06T7/00 , G06T7/10 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及医学图像处理技术领域,具体涉及一种胸部多器官分割方法及系统和计算机可读存储介质;本发明采用STUNet模型作为分割模型的基础模型,采用对部分器官标记的胸部CT图像进行训练,对缺标数据赋予伪标签,最终实现将无标或缺标的胸部CT图像形成全标记CT图像,进而训练得到胸部多器官分割模型,实现对无标或缺标的胸部CT图像的分割,解决了胸部CT图像全数据少的问题,使缺标或无标的胸部CT图像得到充分利用,实现准确的胸部多器官分割模型的构建。
-
公开(公告)号:CN117612711A
公开(公告)日:2024-02-27
申请号:CN202410087069.6
申请日:2024-01-22
Applicant: 神州医疗科技股份有限公司
IPC: G16H50/20 , G06F18/213 , G06F18/25 , G06F18/24
Abstract: 本发明公开了一种分析肝癌复发数据的多模态预测模型构建方法及系统,通过将临床文本、影像、病理多个模态数据进行整合,基于多种模态数据和多种融合策略构建了分析肝癌复发数据的多模态预测模型,相比单模态建模,多模态建模能提高模型预测的准确性,弥补单一数据的局限性,本方案对各个模态的特征进行单独调优,全面反映肝癌复发数据的复杂机制,对于肝癌复发数据的分析更为完备,还能增强模型的泛化能力,更好地适用于医学应用场景,辅助临床决策。
-
公开(公告)号:CN117174319A
公开(公告)日:2023-12-05
申请号:CN202311452738.7
申请日:2023-11-03
Applicant: 神州医疗科技股份有限公司
IPC: G16H50/30 , G06N5/022 , G06N3/0464
Abstract: 本发明涉及一种基于知识图谱的脓毒症时序预测方法及系统;该方法包括:获取脓毒症患者的时序诊次信息,形成诊次数据集;基于CCS或ICD编码技术,构建医学本体图谱;基于医学本体图谱,构建目标脓毒症患者的诊次图谱;基于诊次图谱,生成诊次邻接矩阵和诊次特征矩阵;将诊次邻接矩阵和诊次特征矩阵分别输入至ST‑GCN网络模型中,得到目标脓毒症患者诊次T的诊断预测结果。本发明通过将脓毒症患者患者的时序诊次信息和医学知识图谱相结合,实现全流程端到端预测,不仅有利于模型提取出患者更准确的表征,提升模型预测的准确性,还能够对大量减少医生的工作量,节省医疗资源。
-
公开(公告)号:CN116703896B
公开(公告)日:2023-10-24
申请号:CN202310963187.4
申请日:2023-08-02
Applicant: 神州医疗科技股份有限公司
IPC: G06T7/00 , G06V10/26 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及前列腺癌技术领域,具体涉及一种基于多模态的前列腺癌与增生预测系统及构建方法;本方法包括采集患者的临床数据以及前列腺序列的CT影像,采用3DUNET分割模型对前列腺影像序列的前列腺区域进行ROI标注,经VIT算法模型处理后得出患者的前列腺影像embedding,对患者的临床数据进行预处理后得到患者的临床embedding,将对应的影像和临床embedding进行拼接,得到前列腺癌与增生预测模型;本发明通过将临床数据与影响数据进行结合形成多模态数据,并构建预测模型,实现对前列腺癌与增生的预测,解决了临床上医生对PSA值处于4到6的患者影像判断的挑战,避免患者做活检带来的痛苦。
-
公开(公告)号:CN116665017A
公开(公告)日:2023-08-29
申请号:CN202310939774.X
申请日:2023-07-28
Applicant: 神州医疗科技股份有限公司
IPC: G06V10/82 , G16H50/20 , G06N3/0464 , G06N7/01 , G06N20/00 , G06V10/25 , G06V10/40 , G06V10/764
Abstract: 本发明涉及前列腺癌技术领域,具体涉及一种基于影像组学的前列腺癌预测系统及构建方法;本发明系统包括采集模块,用于采集前列腺患者的影像序列,标注模块,用于对前列腺区域进行ROI标注,特征提取模块,用于进行特征提取,特征筛选模块,用于选出前列腺影像序列的重要特征,预测模型构建模块,用于通过重要特征,基于随机森林、XGBoost,朴素贝叶斯、k最近邻、支持向量机、逻辑回归、决策树和adaboost分别构建模型,评价模块,用于计算模型的评价指标,采用评价指标最优的模型作为最后的前列腺癌预测模型,预测模块,用于预测待测者的前列腺癌风险;通过本发明实现对前列腺癌的评估,解决需要活检造成患者痛苦的问题。
-
公开(公告)号:CN117952988A
公开(公告)日:2024-04-30
申请号:CN202410120321.9
申请日:2024-01-29
Applicant: 神州医疗科技股份有限公司
Abstract: 本发明涉及一种腹部CT图像的肝脏和肝脏肿瘤3D分割后处理方法,该方法包括以下步骤:获取腹部CT图像,并进行肝脏和肝脏肿瘤的分割,得到第一肝脏分割结果和第一肝脏肿瘤分割结果;分别对所述第一肝脏分割结果和所述第一肝脏肿瘤分割结果进行第一次处理,得到第三肝脏分割结果和第三肝脏肿瘤分割结果,取并集后得到第四肝脏分割结果;对所述第四肝脏分割结果进行第二次处理,得到第八肝脏分割结果;对所述第八肝脏分割结果进行第三次处理,得到最终的肝脏分割输出结果,将所述肝脏输出图像与所述第三肝脏肿瘤分割结果取交集,得到最终的肝脏肿瘤分割输出结果。本发明,能够实现降低分割偏差的目的,提高肝脏及肝脏肿瘤分割的精度。
-
公开(公告)号:CN117649418B
公开(公告)日:2024-04-19
申请号:CN202410128271.9
申请日:2024-01-30
Applicant: 神州医疗科技股份有限公司
IPC: G06T7/00 , G06T7/10 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及医学图像处理技术领域,具体涉及一种胸部多器官分割方法及系统和计算机可读存储介质;本发明采用STUNet模型作为分割模型的基础模型,采用对部分器官标记的胸部CT图像进行训练,对缺标数据赋予伪标签,最终实现将无标或缺标的胸部CT图像形成全标记CT图像,进而训练得到胸部多器官分割模型,实现对无标或缺标的胸部CT图像的分割,解决了胸部CT图像全数据少的问题,使缺标或无标的胸部CT图像得到充分利用,实现准确的胸部多器官分割模型的构建。
-
公开(公告)号:CN116703896A
公开(公告)日:2023-09-05
申请号:CN202310963187.4
申请日:2023-08-02
Applicant: 神州医疗科技股份有限公司
IPC: G06T7/00 , G06V10/26 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及前列腺癌技术领域,具体涉及一种基于多模态的前列腺癌与增生预测系统及构建方法;本方法包括采集患者的临床数据以及前列腺序列的CT影像,采用3DUNET分割模型对前列腺影像序列的前列腺区域进行ROI标注,经VIT算法模型处理后得出患者的前列腺影像embedding,对患者的临床数据进行预处理后得到患者的临床embedding,将对应的影像和临床embedding进行拼接,得到前列腺癌与增生预测模型;本发明通过将临床数据与影响数据进行结合形成多模态数据,并构建预测模型,实现对前列腺癌与增生的预测,解决了临床上医生对PSA值处于4到6的患者影像判断的挑战,避免患者做活检带来的痛苦。
-
-
-
-
-
-
-
-
-