-
公开(公告)号:CN118429223A
公开(公告)日:2024-08-02
申请号:CN202410472054.1
申请日:2024-04-19
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明公开了一种低质量人脸图像的无监督增强方法和存储介质,属于图像增强技术领域,本申请通过构建构建增强模型,对人脸图像信息和光照状态进行解析,实现非均匀人脸图像的亮度增强,增强模型基于深度学习和神经网络技术,能够自动学习人脸图像的特征和增强方法,提高图像的质量,然后通过使用生成对抗网络模型构建判别模型,结合约束函数对增强模型的输出进行处理,以保持增强结果的真实细节和自然图像状态,并对增强结果进行有效的约束,本申请充分挖掘了图像中的人脸特征信息,并保持了自然曝光的人脸状态,使得低曝光区域的人脸信息接近自然状态,并更好地表达出清晰精细的特征纹理,从而有效提升了模型图像的重建性能。