-
公开(公告)号:CN113553918B
公开(公告)日:2023-09-26
申请号:CN202110741349.0
申请日:2021-06-30
Applicant: 电子科技大学
IPC: G06V30/412 , G06V30/14 , G06V30/148 , G06V30/19 , G06V10/82 , G06N3/0464 , G06N3/045 , G06N3/049 , G06N3/084
Abstract: 本发明公开了一种基于脉冲主动学习的机打发票字符识别方法,该方法包括构建可直接训练的深度脉冲神经网络模型ResNet‑18和CIFARNet,并且设计了脉冲主动学习的具体步骤。主动学习用于挑选出能够给模型提供更多信息量的有效样本,使得用最少的数据量训练模型并达到最好的效果。我们在识别机打发票的项目中对脉冲主动学习算法进行字符识别应用,将机打发票的文字部分进行提取,并将提取的中文、英文、数字进行单字分割,最后把分割好的单个字符样本输入模型训练,模型能够筛选信息量最大的样本,我们只对模型挑选出的样本做人工标记。
-
公开(公告)号:CN113553918A
公开(公告)日:2021-10-26
申请号:CN202110741349.0
申请日:2021-06-30
Applicant: 电子科技大学
Abstract: 本发明公开了一种基于脉冲主动学习的机打发票字符识别方法,该方法包括构建可直接训练的深度脉冲神经网络模型ResNet‑18和CIFARNet,并且设计了脉冲主动学习的具体步骤。主动学习用于挑选出能够给模型提供更多信息量的有效样本,使得用最少的数据量训练模型并达到最好的效果。我们在识别机打发票的项目中对脉冲主动学习算法进行字符识别应用,将机打发票的文字部分进行提取,并将提取的中文、英文、数字进行单字分割,最后把分割好的单个字符样本输入模型训练,模型能够筛选信息量最大的样本,我们只对模型挑选出的样本做人工标记。
-