一种基于独立性的振动信号去噪方法及系统

    公开(公告)号:CN109272054B

    公开(公告)日:2020-10-02

    申请号:CN201811194561.4

    申请日:2018-10-15

    Applicant: 燕山大学

    Abstract: 本发明公开一种基于独立性的振动信号去噪方法及系统。方法包括:获取信号的相位标记起始点位置和标记长度参数;根据基准信号、相位标记起始点位置创建基准数据;根据比对信号、相位标记起始点位置和标记长度参数创建移相数据集;对基准数据和移相数据集中的数据分别采用独立成分分析法进行处理,得到过程分离信号;获取过程分离信号的相位标记因子矩阵;根据相位标记因子矩阵的异常值信息确定相位信息;根据相位信息调整比对信号相位,与基准信号共同构造得到调整数据集;对调整数据集采用独立成分分析法进行处理,得到最终分离信号;根据最终分离信号的时频特征确定去噪信号。采用本发明能够有效去除振动信号噪声,实现振动信号的特征提取。

    基于数据-模型驱动的K-SVD的滚动轴承冲击性故障诊断方法

    公开(公告)号:CN111222289B

    公开(公告)日:2022-03-11

    申请号:CN202010028291.0

    申请日:2020-01-10

    Applicant: 燕山大学

    Abstract: 基于数据‑模型驱动的K‑SVD的滚动轴承冲击性故障诊断方法,该方法先利用加速度传感器采集振动信号s,然后将信号分段得到最初的训练数据集D1;求D1中相邻原子的谱峭度差值,得到谱峭度差值最大的原子do;根据故障信号特点构建最优原子dop,由do得到模型中的参数,将dop直接扩充为最新的训练数据集;利用K‑SVD方法训练字典,并在原子更新过程中加入去相干步骤;利用正交匹配追踪算法得到重构后的冲击信号;对重构信号进行包络分析。本发根据冲击信号特点构造不含噪声的训练数据集,使得学习字典对信号有更佳的稀疏表示效果,重构信号包含更多特征信息,有助于实现滚动轴承冲击性故障诊断。

    基于数据-模型驱动的K-SVD的滚动轴承冲击性故障诊断方法

    公开(公告)号:CN111222289A

    公开(公告)日:2020-06-02

    申请号:CN202010028291.0

    申请日:2020-01-10

    Applicant: 燕山大学

    Abstract: 基于数据-模型驱动的K-SVD的滚动轴承冲击性故障诊断方法,该方法先利用加速度传感器采集振动信号s,然后将信号分段得到最初的训练数据集D1;求D1中相邻原子的谱峭度差值,得到谱峭度差值最大的原子do;根据故障信号特点构建最优原子dop,由do得到模型中的参数,将dop直接扩充为最新的训练数据集;利用K-SVD方法训练字典,并在原子更新过程中加入去相干步骤;利用正交匹配追踪算法得到重构后的冲击信号;对重构信号进行包络分析。本发根据冲击信号特点构造不含噪声的训练数据集,使得学习字典对信号有更佳的稀疏表示效果,重构信号包含更多特征信息,有助于实现滚动轴承冲击性故障诊断。

    一种基于独立性的振动信号去噪方法及系统

    公开(公告)号:CN109272054A

    公开(公告)日:2019-01-25

    申请号:CN201811194561.4

    申请日:2018-10-15

    Applicant: 燕山大学

    Abstract: 本发明公开一种基于独立性的振动信号去噪方法及系统。方法包括:获取信号的相位标记起始点位置和标记长度参数;根据基准信号、相位标记起始点位置创建基准数据;根据比对信号、相位标记起始点位置和标记长度参数创建移相数据集;对基准数据和移相数据集中的数据分别采用独立成分分析法进行处理,得到过程分离信号;获取过程分离信号的相位标记因子矩阵;根据相位标记因子矩阵的异常值信息确定相位信息;根据相位信息调整比对信号相位,与基准信号共同构造得到调整数据集;对调整数据集采用独立成分分析法进行处理,得到最终分离信号;根据最终分离信号的时频特征确定去噪信号。采用本发明能够有效去除振动信号噪声,实现振动信号的特征提取。

Patent Agency Ranking