零试学习和特征提取的旋转机械故障诊断方法

    公开(公告)号:CN114492618A

    公开(公告)日:2022-05-13

    申请号:CN202210076016.5

    申请日:2022-01-23

    Applicant: 燕山大学

    Abstract: 本发明公开了零试学习和特征提取的旋转机械故障诊断方法,属于深度学习和故障诊断领域,包括特征细化模块主要解决现有大多数方法存在的跨数据集偏差问题,该模块将语义视觉映射整合到一个统一的生成模型中,以细化可见和不可见类样本的视觉特征,引入了自适应边缘中心损失来明确鼓励类内紧凑性和类间可分性,它与语义循环一致性约束结合,使特征细化模块能够学习更有区别的与类和语义相关的特征表示,本发明不仅有效地解决了跨数据集偏差问题,避免微调的低效和过拟合风险,并且具有显著的性能增益。

    零试学习和特征提取的旋转机械故障诊断方法

    公开(公告)号:CN114492618B

    公开(公告)日:2024-11-01

    申请号:CN202210076016.5

    申请日:2022-01-23

    Applicant: 燕山大学

    Abstract: 本发明公开了零试学习和特征提取的旋转机械故障诊断方法,属于深度学习和故障诊断领域,包括特征细化模块主要解决现有大多数方法存在的跨数据集偏差问题,该模块将语义视觉映射整合到一个统一的生成模型中,以细化可见和不可见类样本的视觉特征,引入了自适应边缘中心损失来明确鼓励类内紧凑性和类间可分性,它与语义循环一致性约束结合,使特征细化模块能够学习更有区别的与类和语义相关的特征表示,本发明不仅有效地解决了跨数据集偏差问题,避免微调的低效和过拟合风险,并且具有显著的性能增益。

Patent Agency Ranking