-
公开(公告)号:CN116465631A
公开(公告)日:2023-07-21
申请号:CN202310459988.7
申请日:2023-04-26
Applicant: 燕山大学
IPC: G01M13/045 , G06F18/10 , G06N3/006 , G06F17/10
Abstract: 本发明公开了一种振动共振辅助增强随机共振耦合系统的轴承故障诊断方法,属于机械故障诊断技术领域,包括以下步骤:使用传感器采集滚动轴承振动信号,对采集到的滚动轴承振动信号进行希尔伯特包络解调处理,得到振动信号的幅值包络;构建匹配稳态随机共振系统,并与振动共振系统通过非线性耦合的方式组成耦合系统;将得到的幅值包络作为所构建耦合系统的输入信号,并采用优化算法实现系统多参数的优化选取;将得到的最优参数代入耦合系统,对幅值包络进行处理,通过对系统输出进行频谱分析,完成对滚动轴承故障的有效识别与诊断。本发明可以实现滚动轴承振动信号中微弱故障特征的有效提取,为滚动轴承早期微弱故障诊断提供了一种有效解决途径。
-
公开(公告)号:CN113295420B
公开(公告)日:2022-04-08
申请号:CN202110650227.0
申请日:2021-06-10
Applicant: 燕山大学
IPC: G01M13/045
Abstract: 本发明涉及一种基于周期指导组稀疏模型的滚动轴承故障诊断方法及系统,方法包括:获取滚动轴承的振动信号;根据所述振动信号确定所述振动信号的增强包络;根据所述增强包络和所述振动信号确定增强包络自相关函数;根据所述增强包络自相关函数确定轴承故障冲击周期估计值;根据所述轴承故障冲击周期估计值构建二进制周期序列;将所述二进制周期序列嵌入弹性网作为约束条件,将L0.5范数作为惩罚函数,根据所述振动信号构建组稀疏模型;将所述振动信号输入所述组稀疏模型,确定降噪信号;对所述降噪信号进行增强包络解调确定滚动轴承故障特征信息。本发明通过对周期冲击特征的有效提取,提高滚动轴承特征的特征提取精度和故障识别的准确性。
-
公开(公告)号:CN113295420A
公开(公告)日:2021-08-24
申请号:CN202110650227.0
申请日:2021-06-10
Applicant: 燕山大学
IPC: G01M13/045
Abstract: 本发明涉及一种基于周期指导组稀疏模型的滚动轴承故障诊断方法及系统,方法包括:获取滚动轴承的振动信号;根据所述振动信号确定所述振动信号的增强包络;根据所述增强包络和所述振动信号确定增强包络自相关函数;根据所述增强包络自相关函数确定轴承故障冲击周期估计值;根据所述轴承故障冲击周期估计值构建二进制周期序列;将所述二进制周期序列嵌入弹性网作为约束条件,将L0.5范数作为惩罚函数,根据所述振动信号构建组稀疏模型;将所述振动信号输入所述组稀疏模型,确定降噪信号;对所述降噪信号进行增强包络解调确定滚动轴承故障特征信息。本发明通过对周期冲击特征的有效提取,提高滚动轴承特征的特征提取精度和故障识别的准确性。
-
-