-
公开(公告)号:CN107092592B
公开(公告)日:2020-06-05
申请号:CN201710229368.9
申请日:2017-04-10
Applicant: 浙江鸿程计算机系统有限公司
IPC: G06F40/30
Abstract: 本发明涉及一种基于多情境数据和代价敏感集成模型的场所个性化语义识别方法,具体实施如下:1)从智能手机使用日志的各类情境数据中提取有效特征,并通过聚类发现加速度数据中的用户活动,构建高情境层次的场所用户活动特征;2)根据场所的活动分布,计算场所语义相似性以获取代价矩阵;3)结合代价矩阵对场所的特征进行建模,引入无标签场所数据进行半监督学习得到多个代价敏感的基分类器;4)集成多个基分类器输出识别模型,对用户访问场所进行个性化语义识别。本发明结合情境感知、代价敏感和半监督学习进行场所个性化语义识别,在普适计算、基于位置的服务等领域具有广阔的应用前景。
-
公开(公告)号:CN107092592A
公开(公告)日:2017-08-25
申请号:CN201710229368.9
申请日:2017-04-10
Applicant: 浙江鸿程计算机系统有限公司
IPC: G06F17/27
Abstract: 本发明涉及一种基于多情境数据和代价敏感集成模型的场所个性化语义识别方法,具体实施如下:1)从智能手机使用日志的各类情境数据中提取有效特征,并通过聚类发现加速度数据中的用户活动,构建高情境层次的场所用户活动特征;2)根据场所的活动分布,计算场所语义相似性以获取代价矩阵;3)结合代价矩阵对场所的特征进行建模,引入无标签场所数据进行半监督学习得到多个代价敏感的基分类器;4)集成多个基分类器输出识别模型,对用户访问场所进行个性化语义识别。本发明结合情境感知、代价敏感和半监督学习进行场所个性化语义识别,在普适计算、基于位置的服务等领域具有广阔的应用前景。
-