-
公开(公告)号:CN106675999B
公开(公告)日:2023-06-02
申请号:CN201710042228.0
申请日:2017-01-20
Applicant: 浙江大学
Abstract: 本发明公开了一种海洋comammox富集培养装置和方法。培养基供应桶通过反应器进水管连接圆柱形罐体的内腔;圆柱形罐体的内腔还通过反应器出水管连接废液桶;反应器进水管和反应器出水管均夹持于不同的蠕动泵中;液位传感器设置于圆柱形罐体内腔中,且高于反应器出水管末端高度;圆柱形罐体外壁上套有中空的控温夹套,控温夹套上设有控温夹套进水口和控温夹套出水口,控温夹套出水口、恒温水浴锅和控温夹套进水口通过管路连接形成循环回路。本发明填补了海洋comammox富集装置与方法上的空白,可用于选择性富集comammox。
-
公开(公告)号:CN109851064A
公开(公告)日:2019-06-07
申请号:CN201910223443.X
申请日:2019-03-22
Applicant: 浙江大学
Abstract: 本发明公开了一种基于软性填料的序批式的全程硝化菌富集装置及其方法。反应器主体为圆柱形罐体,罐体内部填充软性填料,反应器底部设置了回流口,通过回流泵使回流液可以不断从反应器底部提升至顶部,从而实现了反应器的内部循环,增加了活性污泥和软性填料的接触,与传统通过搅拌釜搅拌相比,减少了对反应器的扰动,通过pH和温度的控制确保反应器的环境条件最适合全程硝化菌的生长。本发明可以为全程硝化菌提供寡营养环境以及适合其形成生物膜的载体环境,有效减少生物量的流失,从而达到富集全程硝化菌的目的,获取高纯度的全程硝化菌富集物。本发明培养210天后,comammox相对丰度提高了16倍,有效实现了对comammox的富集。
-
公开(公告)号:CN107759008A
公开(公告)日:2018-03-06
申请号:CN201710907120.3
申请日:2017-09-29
Applicant: 浙江大学
Abstract: 本发明公开了一种微生物电解池处理酸洗废液的方法。本发明首先利用城市污水厂中的污泥作为产电微生物的来源,阴极采用含有高锰酸钾溶液作为电子受体,阴、阳极之间采用质子交换膜隔开;待微生物燃料电池所产电压和电流稳定运行后,把阴极溶液换成酸洗废液进行处理,并在外电路施加电压,将阴极电极换成含有Pt的石墨毡电极;然后在新的条件下进行产H2,收集H2;待酸洗废液的pH值上升至2.5~3.5时,向酸洗废液中充入充足的空气,空气中的O2在溶液中与亚铁离子进行反应生成铁离子,并生成Fe(OH)3沉淀,使溶液中的铁含量降低,阴极产生的沉淀物大部分为铁的化合物,可以回收作为铁系产品的原料。
-
公开(公告)号:CN109851064B
公开(公告)日:2023-11-28
申请号:CN201910223443.X
申请日:2019-03-22
Applicant: 浙江大学
Abstract: 本发明公开了一种基于软性填料的序批式的全程硝化菌富集装置及其方法。反应器主体为圆柱形罐体,罐体内部填充软性填料,反应器底部设置了回流口,通过回流泵使回流液可以不断从反应器底部提升至顶部,从而实现了反应器的内部循环,增加了活性污泥和软性填料的接触,与传统通过搅拌釜搅拌相比,减少了对反应器的扰动,通过pH和温度的控制确保反应器的环境条件最适合全程硝化菌的生长。本发明可以为全程硝化菌提供寡营养环境以及适合其形成生物膜的载体环境,有效减少生物量的流失,从而达到富集全程硝化菌的目的,获取高纯度的全程硝化菌富集物。本发明培养210天后,comammox相对丰度提高了16倍,有效实现了对comammox的富集。
-
公开(公告)号:CN109851065B
公开(公告)日:2023-09-22
申请号:CN201910224145.2
申请日:2019-03-22
Applicant: 浙江大学
Abstract: 本发明公开了一种仿砂滤池式的全程硝化菌富集装置及其方法。反应器主体为圆柱形罐体,罐体内部填充石英砂,石英砂下方以活性炭过滤板和多孔板作为支撑。活性炭过滤板可以强化过滤效果,防止生物量流失到反应器下部。反应器通过进水装置连续进水,反应器内的培养基通过蠕动泵从底部提升至顶部,实现培养基的内循环。本发明可以为全程硝化菌提供类似水厂砂滤池的寡营养环境,反应器内部填充的石英砂和活性炭过滤板,可供微生物附着生长,还能有效防止生物量的流失,并且使用蠕动泵使培养基缓慢循环,充分扩散,从而实现全程硝化菌的有效富集,获得高纯的富集培养物。本发明培养210天后,comammox相对丰度提高了了20.4倍,有效实现了对comammox的富集。
-
公开(公告)号:CN106830302B
公开(公告)日:2022-08-30
申请号:CN201710041783.1
申请日:2017-01-20
Applicant: 浙江大学
IPC: C02F3/12
Abstract: 本发明公开了一种溶解氧自动化控制的MBR全程硝化菌富集装置及其方法。它包括反应器、进水桶、水浴锅和控制柜,其中反应器主体为圆柱形罐体,罐体下方设有进水口,通过内置的膜组件排水,罐体内填充填料,罐体上方设有DO探头和采样口,罐体外侧设有控温夹套,罐体底部设有曝气盘,可以调控反应器中的溶解氧浓度,同时也能起搅拌的作用,并防止膜组件堵塞。本发明可以为全程硝化菌提供低溶解氧、低营养物质的环境,反应器内部填充的填料比表面积大,可供微生物附着生长,出水采用了膜组件,可以有效防止生物量的流失,通过溶解氧探头、空气泵和氮气钢瓶控制反应器内溶解氧在较低水平,从而实现全程硝化菌的有效富集,获得高纯的富集培养物。
-
公开(公告)号:CN107759008B
公开(公告)日:2019-11-15
申请号:CN201710907120.3
申请日:2017-09-29
Applicant: 浙江大学
Abstract: 本发明公开了一种微生物电解池处理酸洗废液的方法。本发明首先利用城市污水厂中的污泥作为产电微生物的来源,阴极采用含有高锰酸钾溶液作为电子受体,阴、阳极之间采用质子交换膜隔开;待微生物燃料电池所产电压和电流稳定运行后,把阴极溶液换成酸洗废液进行处理,并在外电路施加电压,将阴极电极换成含有Pt的石墨毡电极;然后在新的条件下进行产H2,收集H2;待酸洗废液的pH值上升至2.5~3.5时,向酸洗废液中充入充足的空气,空气中的O2在溶液中与亚铁离子进行反应生成铁离子,并生成Fe(OH)3沉淀,使溶液中的铁含量降低,阴极产生的沉淀物大部分为铁的化合物,可以回收作为铁系产品的原料。
-
公开(公告)号:CN109851065A
公开(公告)日:2019-06-07
申请号:CN201910224145.2
申请日:2019-03-22
Applicant: 浙江大学
Abstract: 本发明公开了一种仿砂滤池式的全程硝化菌富集装置及其方法。反应器主体为圆柱形罐体,罐体内部填充石英砂,石英砂下方以活性炭过滤板和多孔板作为支撑。活性炭过滤板可以强化过滤效果,防止生物量流失到反应器下部。反应器通过进水装置连续进水,反应器内的培养基通过蠕动泵从底部提升至顶部,实现培养基的内循环。本发明可以为全程硝化菌提供类似水厂砂滤池的寡营养环境,反应器内部填充的石英砂和活性炭过滤板,可供微生物附着生长,还能有效防止生物量的流失,并且使用蠕动泵使培养基缓慢循环,充分扩散,从而实现全程硝化菌的有效富集,获得高纯的富集培养物。本发明培养210天后,comammox相对丰度提高了了20.4倍,有效实现了对comammox的富集。
-
公开(公告)号:CN107892396A
公开(公告)日:2018-04-10
申请号:CN201711104660.4
申请日:2017-11-10
Applicant: 浙江大学
IPC: C02F3/34
CPC classification number: C02F3/005 , C02F1/4604
Abstract: 本发明公开了一种微生物燃料电池与电容去离子联用的脱盐方法,包括:步骤一、电容去离子电极的制作:将活性炭纤维、乙炔黑、聚偏氟乙烯混合,均匀涂布在钛集电极的表面,烘干形成电容去离子电极;步骤二、微生物燃料电池的启动;将产电微生物与营养液进行混合放入阳极室中,定期更换营养液;阴极室中加入含有铁氰化钾的水溶液,阴极室和阳极室之间的中间室采用电容去离子电极隔开,形成脱盐室,脱盐室中为NaCl水溶液;石墨毡作为阴、阳两极的电极材料,阴极室、阳极室和中间室均为密闭区域并与外界环境隔绝,运行装置;步骤三、电极再生。本发明将微生物燃料电池与电容去离子联合后,能够更好地脱盐,效果优异。
-
公开(公告)号:CN106830302A
公开(公告)日:2017-06-13
申请号:CN201710041783.1
申请日:2017-01-20
Applicant: 浙江大学
IPC: C02F3/12
CPC classification number: Y02W10/15 , C02F3/1268
Abstract: 本发明公开了一种溶解氧自动化控制的MBR全程硝化菌富集装置及其方法。它包括反应器、进水桶、水浴锅和控制柜,其中反应器主体为圆柱形罐体,罐体下方设有进水口,通过内置的膜组件排水,罐体内填充填料,罐体上方设有DO探头和采样口,罐体外侧设有控温夹套,罐体底部设有曝气盘,可以调控反应器中的溶解氧浓度,同时也能起搅拌的作用,并防止膜组件堵塞。本发明可以为全程硝化菌提供低溶解氧、低营养物质的环境,反应器内部填充的填料比表面积大,可供微生物附着生长,出水采用了膜组件,可以有效防止生物量的流失,通过溶解氧探头、空气泵和氮气钢瓶控制反应器内溶解氧在较低水平,从而实现全程硝化菌的有效富集,获得高纯的富集培养物。
-
-
-
-
-
-
-
-
-